Sociomapping

Last updated

Sociomapping is a method developed for processing and visualization of relational data (e.g. social network data). It is most commonly used for mapping the social structure within small teams (10-25 people). Sociomapping uses the landscape metaphor to display complex multi-dimensional data in a 3D map, where individual objects are localized in such way that their distance on the map corresponds to their distance in the underlying data.

Contents

Thanks to its visual coding Sociomapping engages our evolved skills for spatial orientation and movement detection, thus making the interpretation of complex data easy and accessible for everyone.

History

The sociomapping method was developed in 19931994 by R. Bahbouh as a tool that would facilitate understanding of data about social relations and help preventing conflicts within teams of military professionals. The first major application of sociomapping took place in 19941995 during the HUBES experiment (Human Behavior in Extended Spaceflight) – a 135-day-long simulation of a spaceflight with three crew members organized by European Space Agency. Sociomapping was then regularly used in other spaceflight simulations (19951996: EKOPSY, 1999: Mars105, 20102012: Mars500). Since 2005, sociomapping has been extensively used in business environment to analyze relationships within senior management teams. In 2012, C. Höschl jr. developed Real Time Sociomapping® software that enables instant visualization of the team dynamics and monitoring of the teams and social groups over time.

Basic principle

The basic principle of Sociomapping is transforming original data concerning a set of objects in such a way that the distance of each pair of objects on the map corresponds to the distance between the two objects in the underlying data. Transformation of the data is a matter of 1) choosing some metric that could be reasonably interpreted as distance, and 2) translating the multi-dimensional distance matrix into 2D coordinate system so that the correlation between map-distances and data-distances is maximized.

The algorithm for data-transformation, developed by C. Höschl jr., is a dimensionality-reduction technique, such as PCA, and its goodness of fit can be measured by Spearman correlation between the map-distances and data-distances.

Sociomapping takes into account that, particularly in case of social relations, relational data may be asymmetrical (e.g. John like Mary more than she likes him) and preserves this information by mapping the objects in such a way that for each object the closest other object is the one closest to it according to the metric of choice in the underlying data, and so on for other objects ordered by distance.

Application

There are two main areas of application for Sociomapping – groups (small systems) and populations (large systems). For each area a different method of visualization and data transformation is used in order to facilitate people’s ability to understand and interpret the analyzed data.

Groups and small systems

Sociomapping for small systems produces Sociomaps of subjects. These subjects (in most cases people) are placed on the Sociomap reflecting their distance measured in various ways:

Besides the distances between the group members, Sociomap shows additional variable coded in the height (or color) of the subject. Typical variables used for the height are: social status, performance indicators of the subjects, average communication frequency, etc.

Understanding the relative distances between the people helps to understand the structure of the group, find subgroups formed by groups members and discover functions of the group members. In connection to the height Sociomap enables complex and comprehensive insight into the groups and small systems. This is particularly beneficial for workplace strategists.

Sociomapping of small systems produces similar results to social network analysis with additional visualization features.

Profile analysis

Besides the small systems analysis based on various relational data, Sociomapping can be used to visualize the profiles of unrelated subjects. This is done by transformation of subjects' profiles, computing the distances between the profiles and visualizing them in a Sociomap.

There is a software to compute Profile analysis (see section Sociomapping software).

Populations and large systems

For large systems and populations, different type of Sociomaps is used. Data used for these type of maps are rectangular matrices, where for each subject there is a preference vector of selected objects (such as political parties, brands, products, and so on). In order to create a Sociomap, for each subject a position in the map is determined, and a small piece of mass representing this subject is placed on the map according to its vector of preferences to an object. As a result, there are places on the Sociomap where more subject are placed (hills) and where there are no subject (valleys). Therefore, hills are formed on the places representing typical preference configurations and this allows for visual cluster analysis, or segmentation. In this sense, Large systems Sociomapping is a data mining approach based on visual pattern recognition).

Typical uses for Large systems Sociomapping are:

Broader scope of application

Sociomapping has broader scope of application, including the following fields:

Software

So far only one software tool based on Sociomapping was released.

Team profile analyzer is a tool for psychologists, consultants, managers and HR specialists. It enables integration of various sources of information about team from personality, performance or knowledge tests and biographical data. It can be used for team analysis and development: team coaching, team building, recruitment etc.

See also

Related Research Articles

Customer relationship management (CRM) is a process in which a business or other organization administers its interactions with customers, typically using data analysis to study large amounts of information.

<span class="mw-page-title-main">Database</span> Organized collection of data in computing

In computing, a database is an organized collection of data or a type of data store based on the use of a database management system (DBMS), the software that interacts with end users, applications, and the database itself to capture and analyze the data. The DBMS additionally encompasses the core facilities provided to administer the database. The sum total of the database, the DBMS and the associated applications can be referred to as a database system. Often the term "database" is also used loosely to refer to any of the DBMS, the database system or an application associated with the database.

<span class="mw-page-title-main">Geographic information system</span> System to capture, manage and present geographic data

A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database, however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.

<span class="mw-page-title-main">Data model</span> Model that organizes elements of data and how they relate to one another and to real-world entities.

A data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to the properties of real-world entities. For instance, a data model may specify that the data element representing a car be composed of a number of other elements which, in turn, represent the color and size of the car and define its owner.

<span class="mw-page-title-main">Extract, transform, load</span> Procedure in computing

In computing, extract, transform, load (ETL) is a three-phase process where data is extracted, transformed and loaded into an output data container. The data can be collated from one or more sources and it can also be output to one or more destinations. ETL processing is typically executed using software applications but it can also be done manually by system operators. ETL software typically automates the entire process and can be run manually or on reccurring schedules either as single jobs or aggregated into a batch of jobs.

<span class="mw-page-title-main">Social network analysis</span> Analysis of social structures using network and graph theory

Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory. It characterizes networked structures in terms of nodes and the ties, edges, or links that connect them. Examples of social structures commonly visualized through social network analysis include social media networks, meme spread, information circulation, friendship and acquaintance networks, peer learner networks, business networks, knowledge networks, difficult working relationships, collaboration graphs, kinship, disease transmission, and sexual relationships. These networks are often visualized through sociograms in which nodes are represented as points and ties are represented as lines. These visualizations provide a means of qualitatively assessing networks by varying the visual representation of their nodes and edges to reflect attributes of interest.

Web development is the work involved in developing a website for the Internet or an intranet. Web development can range from developing a simple single static page of plain text to complex web applications, electronic businesses, and social network services. A more comprehensive list of tasks to which Web development commonly refers, may include Web engineering, Web design, Web content development, client liaison, client-side/server-side scripting, Web server and network security configuration, and e-commerce development.

<span class="mw-page-title-main">Visualization (graphics)</span> Set of techniques for creating images, diagrams, or animations to communicate a message

Visualization or visualisation is any technique for creating images, diagrams, or animations to communicate a message. Visualization through visual imagery has been an effective way to communicate both abstract and concrete ideas since the dawn of humanity. from history include cave paintings, Egyptian hieroglyphs, Greek geometry, and Leonardo da Vinci's revolutionary methods of technical drawing for engineering and scientific purposes.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">TerraLib</span> Geographic information system software library

TerraLib is an open-source geographic information system (GIS) software library. It extends object-relational database management systems (DBMS) to handle spatiotemporal data types.

A GIS software program is a computer program to support the use of a geographic information system, providing the ability to create, store, manage, query, analyze, and visualize geographic data, that is, data representing phenomena for which location is important. The GIS software industry encompasses a broad range of commercial and open-source products that provide some or all of these capabilities within various information technology architectures.

Software visualization or software visualisation refers to the visualization of information of and related to software systems—either the architecture of its source code or metrics of their runtime behavior—and their development process by means of static, interactive or animated 2-D or 3-D visual representations of their structure, execution, behavior, and evolution.

<span class="mw-page-title-main">System Architect</span> Enterprise architecture tool

Unicom System Architect is an enterprise architecture tool that is used by the business and technology departments of corporations and government agencies to model their business operations and the systems, applications, and databases that support them. System Architect is used to build architectures using various frameworks including TOGAF, ArchiMate, DoDAF, MODAF, NAF and standard method notations such as sysML, UML, BPMN, and relational data modeling. System Architect is developed by UNICOM Systems, a division of UNICOM Global, a United States-based company.

In computing, data transformation is the process of converting data from one format or structure into another format or structure. It is a fundamental aspect of most data integration and data management tasks such as data wrangling, data warehousing, data integration and application integration.

Knowledge Discovery Metamodel (KDM) is a publicly available specification from the Object Management Group (OMG). KDM is a common intermediate representation for existing software systems and their operating environments, that defines common metadata required for deep semantic integration of Application Lifecycle Management tools. KDM was designed as the OMG's foundation for software modernization, IT portfolio management and software assurance. KDM uses OMG's Meta-Object Facility to define an XMI interchange format between tools that work with existing software as well as an abstract interface (API) for the next-generation assurance and modernization tools. KDM standardizes existing approaches to knowledge discovery in software engineering artifacts, also known as software mining.

In business intelligence, location intelligence (LI), or spatial intelligence, is the process of deriving meaningful insight from geospatial data relationships to solve a particular problem. It involves layering multiple data sets spatially and/or chronologically, for easy reference on a map, and its applications span industries, categories and organizations.

The following is provided as an overview of and topical guide to databases:

A software map represents static, dynamic, and evolutionary information of software systems and their software development processes by means of 2D or 3D map-oriented information visualization. It constitutes a fundamental concept and tool in software visualization, software analytics, and software diagnosis. Its primary applications include risk analysis for and monitoring of code quality, team activity, or software development progress and, generally, improving effectiveness of software engineering with respect to all related artifacts, processes, and stakeholders throughout the software engineering process and software maintenance.

Vaa3D is an Open Source visualization and analysis software suite created mainly by Hanchuan Peng and his team at Janelia Research Campus, HHMI and Allen Institute for Brain Science. The software performs 3D, 4D and 5D rendering and analysis of very large image data sets, especially those generated using various modern microscopy methods, and associated 3D surface objects. This software has been used in several large neuroscience initiatives and a number of applications in other domains. In a recent Nature Methods review article, it has been viewed as one of the leading open-source software suites in the related research fields. In addition, research using this software was awarded the 2012 Cozzarelli Prize from the National Academy of Sciences.

References