Solar power in Oklahoma

Last updated
Solar panels, Tulsa Central Library Heidemann 000070 168289 513062 4578 (36592579522).jpg
Solar panels, Tulsa Central Library

Solar power in Oklahoma can provide 44.1% of all electricity used in Oklahoma from 19,300 MW of rooftop solar panels. [1] This scenario is extremely unlikely though because the cost of electricity in Oklahoma is among the lowest in the nation.

Contents

Net metering

Net metering is available to all consumers generating up to 25kW installed behind a single meter. The 25kW limit is more than adequate for the typical home. Solar systems sized above this limit can create subsidies from consumers without solar installations, [2] giving the state an F. [3] [ clarification needed ] The primary reason to use net metering is to roll over summer generation to winter usage, which requires continuous roll over of excess generation. Net metering during the month does, however, allow generation during the day when all the lights are off and everyone is away to be used at night, after the sun has gone down. Since meters are read once a month, daily net metering is not reported. As more renewable energy is used, utilities have needed to become accustomed to incorporating local distributed generation. [4]

Combined solar, wind, and battery storage plans

Solar panel testing, University of Tulsa Otanicar 000514 171955 516925 4578 (36568757600).jpg
Solar panel testing, University of Tulsa

In July 2019, the Western Farmers Electric Cooperative (WFEC) announced plans for the largest combined wind, solar, and energy storage project in the US, 250 MW solar energy project, Skeleton Creek Solar, a 200 MW, 4-hour battery energy storage project, Skeleton Creek Storage, and a 250 megawatt wind farm, Skeleton Creek Wind. The solar and battery facilities are slated to come online in 2023. [5]

Solar challenge

In 2010, the American Solar Challenge, a solar car race, ran from Oklahoma to Illinois. [6]

Statistics

There are no concentrated solar power (CSP) plants planned for Oklahoma, but the state has the potential to install 1,813,000 MW of CSP, capable of generating 5,068,036 million kWh/year. [7]

Solar power in Oklahoma
Source: NREL [8]
Grid-Connected PV Capacity (MW) [9] [10] [11] [12] [13] [14]
YearCapacityInstalled% Change
2010<0.1
20110.20.1100%
20120.30.150%
20130.70.4133%
20141.50.8114%
20155.23.7247%
20167.72.548%
201731.724311%
201845.71344%
2019493.37%
202075.326.353%
202189.314 %
202211222.7 %
Utility-scale solar generation in Oklahoma (GWh) [15]
YearTotalJanFebMarAprMayJunJulAugSepOctNovDec
20165001111100000
201731002344443322
201861346667765443
201959334667775434
202063344566896533
202173446678888654
202277557889977643
202355

See also

Related Research Articles

<span class="mw-page-title-main">Solar power in New Mexico</span> Overview of solar power in the U.S. state of New Mexico

Solar power in New Mexico in 2016 generated 2.8% of the state's total electricity consumption, despite a National Renewable Energy Laboratory (NREL) projection suggesting a potential contribution three orders of magnitude larger.

<span class="mw-page-title-main">Solar power in Nebraska</span> Overview of solar power in the U.S. state of Nebraska

Solar power in Nebraska is used for only a very small percentage of the state's electricity, although it is rapidly becoming competitive with grid electricity, due to the decrease in cost and the eight-year extension to the 30% tax credit, which can be used to install systems of any size. In 2015, the state ranked 47th among the 50 U.S. states with 1.1 MW of installed capacity.

<span class="mw-page-title-main">Solar power in Washington (state)</span>

As of the first quarter of 2023, Washington State has 604 MW of solar power electricity generation. This is an increase from about 300 MW in 2021 and 27 MW in 2013.

<span class="mw-page-title-main">Solar power in Kentucky</span>

Solar power in Kentucky has been growing in recent years due to new technological improvements and a variety of regulatory actions and financial incentives, particularly a 30% federal tax credit, available through 2016, for any size project. Kentucky could generate 10% of all of the electricity used in the United States from land cleared from coal mining in the state. Covering just one-fifth with photovoltaics would supply all of the state's electricity.

<span class="mw-page-title-main">Solar power in Rhode Island</span> Overview of solar power in the U.S. state of Rhode Island

Solar power in Rhode Island has become economical due to new technological improvements and a variety of regulatory actions and financial incentives, particularly a 30% federal tax credit, available through 2016, for any size project. A typical residential installation could pay for itself in utility bill savings in 14 years, and generate a profit for the remainder of its 25 year life. Larger systems, from 10 kW to 5 MW, receive a feed-in tariff of up to 33.45¢/kWh.

<span class="mw-page-title-main">Solar power in Indiana</span> Overview of solar power in the U.S. state of Indiana

Solar power in Indiana has been growing in recent years due to new technological improvements and a variety of regulatory actions and financial incentives, particularly a 30% federal tax credit for any size project.

<span class="mw-page-title-main">Solar power in Kansas</span> Overview of solar power in the U.S. state of Kansas

Solar power in Kansas has been growing in recent years due to new technological improvements and a variety of regulatory actions and financial incentives.

<span class="mw-page-title-main">Solar power in West Virginia</span> Electricity from sunlight in one U.S. state

Solar power in West Virginia on rooftops can provide 23% of all electricity used in West Virginia from 6,300 MW of solar panels, but West Virginia will be the last state in the United States to reach grid parity - the point where solar panels are cheaper than grid electricity - without incentives, due to the low cost of electricity - about $0.062/kWh. The point where grid parity is reached is a product of the average insolation and the average cost of electricity. At $0.062/kWh and 4.3 sun-hours/day, solar panels would need to come down to ~$1,850/kW installed to achieve grid parity. The first state in the US to achieve grid parity was Hawaii. Solar power's favorable carbon footprint compared to fossil fuels is a major motivation for expanding renewable energy in the state, especially when compared to coal to generate electrical power.

<span class="mw-page-title-main">Solar power in Iowa</span> Overview of solar power in the U.S. state of Iowa

Solar power in Iowa is limited but growing, with 137 megawatts (MW) installed by the end of 2019 and 27 MW installed during that year, ranking the state 40th among U.S. states. Iowa also generated 0.23% of the state's total electricity production in 2019 from solar energy; an amount sufficient to power over 17,000 Iowa homes. The state's early position as a major wind-power provider may have limited early large-scale solar investment.

<span class="mw-page-title-main">Solar power in Mississippi</span> Overview of solar power in the U.S. state of Mississippi

Mississippi has substantial potential for solar power, though it remains an underutilized generation method. The rate of installations has increased in recent years, reaching 438 MW of installed capacity in early 2023, ranking 36th among the states. Rooftop photovoltaics could provide 31.2% of all electricity used in Mississippi from 11,700 MW if solar panels were installed on every available roof.

<span class="mw-page-title-main">Solar power in Maine</span> Overview of solar power in the U.S. state of Maine

Solar power in Maine on rooftops, utilizing 6,300 megawatts (MW) of solar panels, can provide 60% of the electricity used in Maine according to a 2016 U.S. Department of Energy study. Maine and Vermont are tied for the second highest rooftop solar potential in the country, only behind the state of California. A 2020 estimate suggests that a typical 5.6 kilowatt (kW) residential system will pay for itself in 6-7 years and generate a profit of $45,000 over the rest of its 25-year life from the tax credits and utility savings.

<span class="mw-page-title-main">Solar power in Alabama</span> Overview of solar power in the U.S. state of Alabama

Solar power in Alabama on rooftops could theoretically provide 29.8% of all electricity used in Alabama, with 20,400 MW of solar panels potentially installed on rooftops.

<span class="mw-page-title-main">Solar power in Missouri</span> Overview of solar power in the U.S. state of Missouri

Solar power in Missouri has been a growing industry since the early 2010s. Solar power is capable of generating 42.7% of the electricity used in Missouri from rooftop solar panels totaling 28,300 MW.

<span class="mw-page-title-main">Solar power in Idaho</span> Solar power in Idaho

Solar power in Idaho comprised 550 MW in 2019. A 2016 report by the National Renewable Energy Laboratory estimated that rooftops alone have the potential to host 4,700 MW of solar panels, and thus provide 26.4% of all electricity used in Idaho. A large increase in the state's solar generating capacity began starting year 2015 when 461 MW of solar power was contracted to be built in Idaho.

<span class="mw-page-title-main">Solar power in Montana</span> Overview of solar power in the U.S. state of Montana

Solar power in Montana on rooftops could provide 28% of all electricity used in Montana from 3,200 MW of solar panels.

<span class="mw-page-title-main">Solar power in New Hampshire</span> Overview of solar power in the U.S. state of New Hampshire

Solar power in New Hampshire provides a small percentage of the state's electricity. State renewable requirements and declining prices have led to some installations. Photovoltaics on rooftops can provide 53.4% of all electricity used in New Hampshire, from 5,300 MW of solar panels, and 72% of the electricity used in Concord, New Hampshire. A 2016 estimate suggests that a typical 5 kW system costing $25,000 before credits and utility savings will pay for itself in 9 years, and generate a profit of $34,196 over the rest of its 25-year life. A loan or lease provides a net savings each year, including the first year. New Hampshire has a rebate program which pays $0.75/W for residential systems up to 5 kW, for up to 50% of the system cost, up to $3,750. However, New Hampshire's solar installation lagged behind nearby states such as Vermont and New York, which in 2013 had 10 times and 25 times more solar, respectively.

<span class="mw-page-title-main">Solar power in Vermont</span> Overview of solar power in the U.S. state of Vermont

Solar power in Vermont provides almost 11% of the state's in-state electricity production as of 2018. A 2009 study indicated that distributed solar on rooftops can provide 18% of all electricity used in Vermont. A 2012 estimate suggests that a typical 5 kW system costing $25,000 before credits and utility savings will pay for itself in 10 years, and generate a profit of $34,956 over the rest of its 25-year life.

<span class="mw-page-title-main">Solar power in Virginia</span>

Solar power in Virginia on rooftops is estimated to be capable of providing 32.4% of electricity used in Virginia using 28,500 MW of solar panels. Installing solar panels provides a 6.8% return on investment in Virginia, and a 5 kW array would return a profit of $16,041 over its 25 year life.

<span class="mw-page-title-main">Solar power in Wisconsin</span> Overview of solar power in the U.S. state of Wisconsin

Solar power in Wisconsin In 2026, Wisconsin rooftops can accommodate approximately 37 GWs of solar capacity and produce 44,183 GWh of electricity, nearly 70% of the statewide generation in 2019. Net metering is available for systems up to at least 20 kW, and excess generation is credited at retail rate to customers next bill. Some utilities allow net metering up to 100 kW. For Xcel customers, kilowatt credits are rolled over monthly and are reconciled annually at avoided cost. Best practices recommend no limits, either individually or aggregate, and perpetual roll over of kilowatt credits.

<span class="mw-page-title-main">Solar power in Tennessee</span> Overview of solar power in the U.S. state of Tennessee

Solar power in Tennessee is capable of producing much of the state's electricity; however, the industry remains in early stages in the state. With 129 MW of solar power in 2015, Tennessee ranked 20th among states for installed solar capacity.

References

  1. Rooftop Solar Photovoltaic Technical Potential in the United States
  2. Oklahoma Net Metering
  3. Freeing the Grid
  4. What is Net metering?
  5. Dzikiy, Phil (2019-07-29). "EGEB: Largest US wind/solar/storage project set for Oklahoma, energy efficiency bill, and more". Electrek. Retrieved 2019-08-03.
  6. American Solar Challenge 2010
  7. Renewable Energy Technical Potential Archived 2012-09-15 at the Wayback Machine
  8. "PV Watts". NREL. Retrieved 11 June 2012.
  9. Sherwood, Larry (August 2012). "U.S. Solar Market Trends 2011" (PDF). Interstate Renewable Energy Council (IREC). p. 17. Archived from the original (PDF) on 2012-09-06. Retrieved 2012-08-16.
  10. Sherwood, Larry (June 2011). "U.S. Solar Market Trends 2010" (PDF). Interstate Renewable Energy Council (IREC). Retrieved 2011-06-29.
  11. Sherwood, Larry (July 2009). "U.S. Solar Market Trends 2008" (PDF). Interstate Renewable Energy Council (IREC). p. 16. Archived from the original (PDF) on 2009-11-23. Retrieved 2010-07-24.
  12. Sherwood, Larry (July 2012). "U.S. Solar Market Trends 2012" (PDF). Interstate Renewable Energy Council (IREC). p. 16. Retrieved 2013-10-11.
  13. Sherwood, Larry (July 2014). "U.S. Solar Market Trends 2013" (PDF). Interstate Renewable Energy Council (IREC). Retrieved 2014-09-26.
  14. Oklahoma Solar
  15. "Electricity Data Browser". U.S. Department of Energy. March 28, 2018. Retrieved October 30, 2021.