Solar power in South Carolina

Last updated
Solar-powered recycle cans, Myrtle Beach Solar Powered recycle cans, Myrtle Beach, SC Boardwalk.jpg
Solar-powered recycle cans, Myrtle Beach

Solar power in South Carolina is rapidly becoming competitive with grid electricity, due to the decrease in cost and the eight-year extension to the 30% federal tax credit, which can be used to install any size system. [1] South Carolina offers a 25% tax credit, meaning that 55% of the cost is covered through tax credits. [2]

Contents

South Carolina's largest solar installation was the 311 kW Grand Strand Solar Station array in Myrtle Beach, completed on April 18, 2011, [3] until December 2, 2011, when Boeing completed covering the roof of their 787 assembly building with a 2.6 MW solar array, sufficient for 20% of the building's energy use. [4] [5]

Solar power in South Carolina
Source: NREL [6]
Installed Photovoltaics [7] [8] [9] [10] [11]
YearTotal (MW)Installed (MW)
20090.6
20100.90.3
20114.13.2
20124.60.5
20138.03.5
2014124
2015153
2016115100
2017405390
2018555150
20191,158.7603.7
20201,781.6622.9
20211,923.8142.2
20222,314390.2

See also

Related Research Articles

<span class="mw-page-title-main">Solar power in Connecticut</span> Overview of solar power in the U.S. state of Connecticut

Solar power in Connecticut establishes Connecticut as the second state in the US to reach grid parity, after Hawaii, due to the high average cost of electricity. Installing solar panels for a home provides an estimated 15.6% return on investment.

<span class="mw-page-title-main">Solar power in Nebraska</span> Overview of solar power in the U.S. state of Nebraska

Solar power in Nebraska is used for only a very small percentage of the state's electricity, although it is rapidly becoming competitive with grid electricity, due to the decrease in cost and the eight-year extension to the 30% tax credit, which can be used to install systems of any size. In 2015, the state ranked 47th among the 50 U.S. states with 1.1 MW of installed capacity.

<span class="mw-page-title-main">Solar power in Washington (state)</span>

As of the first quarter of 2023, Washington State has 604 MW of solar power electricity generation. This is an increase from about 300 MW in 2021 and 27 MW in 2013.

<span class="mw-page-title-main">Solar power in Louisiana</span> Overview of solar power in the U.S. state of Louisiana

Solar power in Louisiana is ranked 34th for installed solar PV capacity as of 2017 by the Solar Energy Industry Association. The state's "solar friendliness" according to Solar Power Rocks has fallen to 50th place for 2018 as the state credit program ends and full 1:1 retail net metering is being phased out. Taxpayers still benefit from federal incentive programs such as the 30 percent tax credit, which applies to business and residential solar photovoltaic and thermal energy systems of any size.

<span class="mw-page-title-main">Solar power in Kentucky</span>

Solar power in Kentucky has been growing in recent years due to new technological improvements and a variety of regulatory actions and financial incentives, particularly a 30% federal tax credit, available through 2016, for any size project. Kentucky could generate 10% of all of the electricity used in the United States from land cleared from coal mining in the state. Covering just one-fifth with photovoltaics would supply all of the state's electricity.

<span class="mw-page-title-main">Solar power in Indiana</span> Overview of solar power in the U.S. state of Indiana

Solar power in Indiana has been growing in recent years due to new technological improvements and a variety of regulatory actions and financial incentives, particularly a 30% federal tax credit for any size project.

<span class="mw-page-title-main">Solar power in Kansas</span> Overview of solar power in the U.S. state of Kansas

Solar power in Kansas has been growing in recent years due to new technological improvements and a variety of regulatory actions and financial incentives.

<span class="mw-page-title-main">Solar power in Alaska</span> Overview of solar power in the U.S. state of Alaska

Solar power in Alaska has been primarily used in remote locations, such as the Nenana Teen Center near Fairbanks, where long summer days provide most of the electricity generated. In 2015, Alaska ranked 45th in installed solar among U.S. states. Rooftop solar panels could provide 23% of all electricity used in Alaska. Net metering is available for PV systems up to 25 kW but is limited to 1.5% of average demand. IREC best practices, based on experience, recommends no limits to net metering, individual or aggregate, and perpetual roll over of kWh credits.

<span class="mw-page-title-main">Solar power in West Virginia</span> Electricity from sunlight in one U.S. state

Solar power in West Virginia on rooftops can provide 23% of all electricity used in West Virginia from 6,300 MW of solar panels, but West Virginia will be the last state in the United States to reach grid parity - the point where solar panels are cheaper than grid electricity - without incentives, due to the low cost of electricity - about $0.062/kWh. The point where grid parity is reached is a product of the average insolation and the average cost of electricity. At $0.062/kWh and 4.3 sun-hours/day, solar panels would need to come down to ~$1,850/kW installed to achieve grid parity. The first state in the US to achieve grid parity was Hawaii. Solar power's favorable carbon footprint compared to fossil fuels is a major motivation for expanding renewable energy in the state, especially when compared to coal to generate electrical power.

<span class="mw-page-title-main">Solar power in South Dakota</span> Overview of solar power production and usage in South Dakota

Solar power in South Dakota has high potential but little practical application. The state ranked 50th among U.S. states in installed solar polar in 2015 with no utility-scale or large commercial systems. Photovoltaic panels on rooftops can provide 38.7% of all electricity used in South Dakota using 3,800 MW of solar panels. The state is ranked 14th in the country in solar power potential, and 4th in wind potential.

<span class="mw-page-title-main">Solar power in Maine</span> Overview of solar power in the U.S. state of Maine

Solar power in Maine on rooftops, utilizing 6,300 megawatts (MW) of solar panels, can provide 60% of the electricity used in Maine according to a 2016 U.S. Department of Energy study. Maine and Vermont are tied for the second highest rooftop solar potential in the country, only behind the state of California. A 2020 estimate suggests that a typical 5.6 kilowatt (kW) residential system will pay for itself in 6-7 years and generate a profit of $45,000 over the rest of its 25-year life from the tax credits and utility savings.

<span class="mw-page-title-main">Solar power in Arkansas</span> Overview of solar power in the U.S. state of Arkansas

Solar power in Arkansas on rooftops can provide 33.3% of all electricity used in Arkansas from 12,200 MW of solar panels.

<span class="mw-page-title-main">Solar power in Georgia (U.S. state)</span> Overview of solar power in the U.S. state of Georgia

Solar power in Georgia on rooftops can provide 31% of all electricity used in Georgia.

Solar power in Illinois has been increasing, as the cost of photovoltaics has decreased. As of the end of 2020, Illinois had 465 megawatts (MW) of installed photovoltaic and concentrated solar power capacity combined employing over 5,200 jobs. Illinois adopted a net metering rule which allows customers generating up to 40 kW to use net metering, with the kilowatt hour surplus rolled over each month, and lost at the end of either April or October, as selected by the customer. In 2011, the limit was raised to 2 MW, but is not net metering, as the term is commonly known, as it uses two meters for systems larger than 40 kW.

<span class="mw-page-title-main">Solar power in Minnesota</span> Overview of solar power in the U.S. state of Minnesota

Solar power in Minnesota expanded significantly in the early 2010s as a result of the cost decrease of photovoltaics and favorable policies. By 2016, it began to grow quickly.

<span class="mw-page-title-main">Solar power in Maryland</span> Overview of solar power in the U.S. state of Maryland

Solar power in Maryland is supported by the state's legislation regarding the Renewable Portfolio Standard and Solar Renewable Energy Credit (SREC) program. The target for renewable energy as of 2017 is 20% by 2020, including 2% from solar power.

<span class="mw-page-title-main">Solar power in Montana</span> Overview of solar power in the U.S. state of Montana

Solar power in Montana on rooftops could provide 28% of all electricity used in Montana from 3,200 MW of solar panels.

<span class="mw-page-title-main">Solar power in New Hampshire</span> Overview of solar power in the U.S. state of New Hampshire

Solar power in New Hampshire provides a small percentage of the state's electricity. State renewable requirements and declining prices have led to some installations. Photovoltaics on rooftops can provide 53.4% of all electricity used in New Hampshire, from 5,300 MW of solar panels, and 72% of the electricity used in Concord, New Hampshire. A 2016 estimate suggests that a typical 5 kW system costing $25,000 before credits and utility savings will pay for itself in 9 years, and generate a profit of $34,196 over the rest of its 25-year life. A loan or lease provides a net savings each year, including the first year. New Hampshire has a rebate program which pays $0.75/W for residential systems up to 5 kW, for up to 50% of the system cost, up to $3,750. However, New Hampshire's solar installation lagged behind nearby states such as Vermont and New York, which in 2013 had 10 times and 25 times more solar, respectively.

<span class="mw-page-title-main">Solar power in Vermont</span> Overview of solar power in the U.S. state of Vermont

Solar power in Vermont provides almost 11% of the state's in-state electricity production as of 2018. A 2009 study indicated that distributed solar on rooftops can provide 18% of all electricity used in Vermont. A 2012 estimate suggests that a typical 5 kW system costing $25,000 before credits and utility savings will pay for itself in 10 years, and generate a profit of $34,956 over the rest of its 25-year life.

<span class="mw-page-title-main">Solar power in Wisconsin</span> Overview of solar power in the U.S. state of Wisconsin

Solar power in Wisconsin In 2026, Wisconsin rooftops can accommodate approximately 37 GWs of solar capacity and produce 44,183 GWh of electricity, nearly 70% of the statewide generation in 2019. Net metering is available for systems up to at least 20 kW, and excess generation is credited at retail rate to customers next bill. Some utilities allow net metering up to 100 kW. For Xcel customers, kilowatt credits are rolled over monthly and are reconciled annually at avoided cost. Best practices recommend no limits, either individually or aggregate, and perpetual roll over of kilowatt credits.

References

  1. Tax Credits Extended: Renewable Energy Industry Breathes Sigh of Relief
  2. Solar power picking up some heat in S.C. Archived 2012-05-29 at the Wayback Machine
  3. Solar Power
  4. Boeing South Carolina to be powered by 100% renewable energy
  5. SCE&G completes Boeing’s solar rooftop project
  6. "PV Watts". NREL. Retrieved 23 May 2012.
  7. Sherwood, Larry (August 2012). "U.S. Solar Market Trends 2011" (PDF). Interstate Renewable Energy Council (IREC). p. 17. Archived from the original (PDF) on 2012-09-06. Retrieved 2012-08-16.
  8. Sherwood, Larry (July 2009). "U.S. Solar Market Trends 2008" (PDF). Interstate Renewable Energy Council (IREC). p. 16. Archived from the original (PDF) on 2009-11-23. Retrieved 2010-07-24.
  9. Sherwood, Larry (July 2012). "U.S. Solar Market Trends 2012" (PDF). Interstate Renewable Energy Council (IREC). p. 16. Retrieved 2013-10-11.
  10. Sherwood, Larry (July 2014). "U.S. Solar Market Trends 2013" (PDF). Interstate Renewable Energy Council (IREC). Retrieved 2014-09-26.
  11. South Carolina Solar