Smart grid policy of the United States

Last updated

Smart grid policy in the United States refers to legislation and other governmental orders influencing the development of smart grids in the United States.

Contents

Background

The term smart grid describes a next-generation electric power system, that is classified by the increased use of communication and information technology in the generation, delivery, and consumption of electrical energy. [1] For individual consumers, smart grid technology offers more control over electricity consumption. Typically, the goal is overall greater energy efficiency (for example, programming home appliances to run at specific times when electrical demand is lowest).

The reliability and efficiency of the electrical grid can be enhanced by implementing smart grid technologies. However, this will require modifications to the current electrical system, and advances towards smart grid adoption in the United States have been slow. Key federal legislation driving the development of smart grid-related technology for the American electrical system includes Title XIII of the Energy Independence and Security Act of 2007 (EISA). Further, smart grid regulations will help to further drive the adoption of smart grid technology in the United States.

Timeline

Some milestones [2]

Energy Independence and Security Act of 2007 Title XIII

Title XIII of the Energy Independence and Security Act of 2007 (Pub.L. 110–140) [12] is the only major piece of federal legislation that addresses the modernization of the United States’ electric utility transmission and distribution system by upgrading to the Smart Grid.

Smart Grid on a broad scale, refers to an advanced distribution system, which accommodates for the “flow of information from a customer’s meter in two directions: both inside the house to thermostats, appliances, and other devices, and from the house back to the utility”. [13] Smart Grid is designed to support operational and energy measures such as smart meters and appliances, renewable energy resources, as well as energy efficiency resources. [13]

The Department of Energy (DoE) is required by Section 1304 of the act to conduct Smart Grid research, development, and demonstration. In addition, the National Institute of Standards and Technology is to establish protocols and standards for Smart Grid equipment and systems. Smart Grid technology is subsidized by the creation of a program within the DoE that “reimburses 20% of qualifying Smart Grid investments”. [13] On a state level, utilities providers are encouraged to employ Smart Grid technology and to recover Smart Grid investments through rates.

Section 1301: Statement of policy on modernization of electricity grid

The most comprehensive discussion of Smart Grid technology and its potential implementation in the United States is outlined in Title XIII of the Energy Independence and Security Act of 2007. This portion of the legislation states the policy position of the United States government to “support the modernization of the Nation’s electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure that can meet future demand growth...” as well as to achieve several characteristic aspects of the Smart Grid. [14] These aspects include smart metering, the use of digital controls to improve the efficiency, reliability, and security of the grid, deployment of smart technologies, and other key developments that would enhance the U.S. electric grid.

Section 1302: Smart grid system report

According to Title XIII Section 1302, reports are to be made to Congress one year after enactment and every two years subsequently to give “the status of smart grid deployments nationwide as well as any regulatory or government barriers to continued deployment”. [14] The Smart Grid Task Force established in section 1303 will assist with this, and provide the current status and prospects of the smart grid including “information on technology penetration, communications network capabilities, costs, and obstacles”. [14] This task force can make recommendations for State and Federal policies or actions to ease in the transition to a smart grid.

Section 1303. Smart grid advisory committee and smart grid task force

Title XIII Sec. 1303(a-b) provides for the creation of a Smart Grid Task Force and Advisory Committee. The purpose of the Smart Grid task force is to undertake research and development about the smart grid, developing relevant standards and protocols, defining the relationship between smart grid technologies and practices and current electric utility regulation, as well as researching the development of smart grid infrastructure. [14] The task force is intended to collaborate with the Smart Grid Advisory Committee, whose purpose is to advise policymakers on the development of smart grid technologies and the progress of the country in adopting and transitioning to these technologies. [14] Section 1302 of Title XIII calls for a biyearly Smart Grid system report to be generated by the Secretary of Energy and the Smart Grid Task Force with contributions from the Smart Grid Advisory Committee to brief Congress on the status of smart grid deployments throughout the country as well as “any regulatory or government barriers to continued deployment”. [14] The report is to address the current status and outlook of the development and implementation of the smart grid.

Section 1304. Smart grid technology research, development and demonstration

Sec. 1304(a) also calls for the implementation of a program to develop power grid digital information technology, such as developing sophisticated techniques for determining peak load reductions and energy-efficiency savings from smart metering and other smart grid components. Other responsibilities of this program include creating algorithms to use in electric transmission system software applications and to investigate potential access by electric utilities to the electricity stored in alternative vehicles to meet peak demand loads. A smart grid regional demonstration initiative was also established by EISA Title XIII Sec. 1304(b) that is composed of demonstration projects aimed towards advanced technologies in the power grid. The goals of the ‘Initiative’ include demonstrating the potential benefits of investing in advanced grids and facilitating in the transition from the current grid system to the smart grid. These and other goals are to be carried out in the form of demonstrations in different electricity control areas.

Section 1305. Smart grid interoperability framework

A Smart Grid Interoperability Framework is mandated by Section 1305(a-e) of Title XIII whose purpose is to develop protocols and standards for the management of information so that smart grid devices and systems can interoperate within the existing electrical grid. The overarching goal of this framework is to “align policy, business, and technology approaches in a manner that would enable all electric resources, including demand-side resources, to contribute to an efficient, reliable electricity network”. [14]

Section 1306. Federal matching fund for smart grid investment costs

Sec. 1306(a) provides for a federal matching fund for smart grid investment costs in which 20% of qualifying smart grid investments will be reimbursed by the grant program. [14] Qualifying investments that are provided for in section 1306(b) include certain household appliances, specialized electricity-using equipment like motors and drivers, metering devices and transmission and distribution equipment. The computer software that enables devices to engage in Smart Grid functions is also considered qualifying investments, as well as hybrid vehicles.

Section 1307. State consideration for smart grid

Section 1307 provides that electric utilities in individual states should consider and report to the state on investing in a qualified smart grid system based on a variety of economic, social, and technological factors. These factors listed in Sec. 1307(a)(16)(A)include the total costs and cost-effectiveness, "improved reliability, security, system performance, and societal benefit". [14] State electric utilities are also permitted in Sec. 1307(a)(16)(B)to recover any capital, operating expenditure, or other costs of the electric utility relating to the deployment of the smart grid, from ratepayers. Electricity purchasers are likewise entitled to direct access to information from their electricity provider on the smart grid such as prices, usage, intervals and projections, and sources from which their power was generated. Purchasers are also allowed to access their power information through the internet or other means as granted through Sec. 1307(a)(17)(B).

Section 1308. Study of the effect of private wire laws on development

Studies on both the effect of private wire laws on the development of combined heat and power facilities as well as on security attributes of smart grid systems are also provided for in this piece of the legislation. A study of the laws and regulations affecting the siting of privately owned electric distribution wires on and across public rights-of-way is to be conducted according to Sec. 1308(a)(1). The required evaluation must address the purposes of the laws and the “effect the laws have on the development of combined heat and power facilities”. [14] The study must also determine whether a change in the laws would have any major impacts on electric utilities and the customers of the utilities. Lastly, it must assess whether privately owned electric distribution wires would result in “duplicative facilities” and whether these are necessary or desirable.

Section 1309. DoE study of security attributes of smart grid systems

This section requires that a report be submitted to Congress that “provides a quantitative assessment and determination of the existing and potential impacts of the deployment of Smart Grid systems on improving the security of the Nation’s electricity infrastructure and operating capability” according to Sec. 1309(a). [14] The report should address how Smart Grid improves or disrupts the security of the nation's electrical grid, reliability, stability during emergencies, and potential risks of the system.

Development barriers

There are many technological barriers to achieving a smart grid. One of the largest is the deployment of advanced metering infrastructure (AMI) technology. These devices receive market data and adjust household consumption accordingly. The ability to measure bidirectional flow of power and offer dynamic pricing by AMI technology is essential to the successfulness of the deployment of other technologies such as distributed generation, demand response measures, or automated distribution schemes. [15] Additionally, the aging distribution system raises questions as to whether it will be able to reliably handle smart technology and distributed distribution. Investments will need to be made in distribution infrastructure and management practices to handle the increase in smart technology deployment. Consumer products such as washers, driers, and water heaters need to be designed or retrofitted to handle dynamic communication of market signals from AMI devices. Finally, the widespread sharing of data and control of personal devices presents large legal, privacy, and security risks that must be addressed. [16]

Future regulation and policy

Since the federal government has stated the goal of promoting smart grid-technology, future legislation and incentives will address technical implementation and budgetary barriers. The Department of Energy (DoE), Federal Energy Regulatory Commission (FERC), and National Institute of Standards and Technology (NIST) are the primary government agencies developing smart grid policy. The DoE is working towards the development of smart grids through investment grants, demonstration pilot programs, and research and development. [17] In addition, they are responsible for monitoring the progress of smart grid deployment and must submit a biannual report to Congress. The Federal Energy Regulatory Commission (FERC) has the authority to regulate the wholesale distribution of electricity. FERC is collaborating with the National Institute of Standards and Technology to develop the hundreds of standards necessary to regulate smart grid technology. The development of regulations and standards for the wide range of technology involved is essential to remove legal barriers and facilitate the development of technological solutions.

Department of Energy

In 2009, the DoE elected 9 pilot projects to demonstrate different smart grid technologies under the Distributed Systems Integration Program. Each program is expected to reduce peak loads by 15%. Projects are located in Hawaii, California, Nevada, Utah, Colorado, Illinois, West Virginia, and New York. The technologies being tested for each project vary widely based on the resources available in the region. For example, in Las Vegas, Nevada where residential energy demand is high due to the desert climate, the “Hybrid” Home project by the University of Nevada, Las Vegas aims to reduce residential peak load demand by developing photovoltaics and energy storage with advanced meters for automated demand response. In Illinois on the other hand, the Never-Failing Perfect Power Prototype by the Illinois Institute of Technology aims to integrate advanced meters, power controller systems, and demand response controllers to create a more robust distribution grid that reduces peak loads and reduces the risk of blackouts. These pilot projects are important research opportunities both to develop the new technology and to point out policy and regulation concerns that must be addressed. [18]

In addition to funding research and pilot programs, the DoE is tasked with monitoring the development of smart grids and reporting to Congress every two years. In their first report in 2009, the DoE set forth 20 metrics by which current smart grids deployment was rated and can be measured. The report found that policy and regulatory progress was at a low level of maturity but was increasing at a moderate trend. The report also stated that policy and regulation should be emphasized to enable the development of new smart grid products, services, and markets. [19]

Federal Energy Regulatory Commission

FERC's primary responsibilities and jurisdiction require it to establish rates and terms and conditions for wholesale interstate transmission and sale of electricity. Under EISA it is given the authority to develop standards but has not been mandated to or given the authority to make standards mandatory. Their efforts, therefore, have been to collect information and concerns from stakeholders such as the National Association of Regulatory Utility Commissioners and assist the NIST in developing standards relevant to FERC's jurisdiction. FERC identified two major policy issues to address, system security and inter-system communication. In addition, it identified wide-area situational awareness, demand response, electric storage, electric vehicles, advanced metering, and distribution system automation as six areas of functionality that must be given priority. [20]

National Institute of Standards and Technology

In January 2010, the NIST published the Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0. The publication identified 75 standards ranging from telecommunications, internet, and power industry topics that are applicable to smart grids. In addition, it identified 16 priority areas that are essential to addressing policy and regulatory gaps. The NIST also formed the Smart Grid Interoperability Panel of 22 stakeholders to continually provide input on the regulations being developed. This panel will play a major role in the second release of the standards, on which work began in October 2010. In a future phase fully consistent with NIST's core mission and its charge under 2007 EISA, the integrated testbed will also serve as an on-going permanent resource to the electric power industrial sector for smart grid standards validation and development of advanced smart grid measurements suggested by the evolution of the grid. The testbed will implement network communication by way of a home microgrid protocol and the Building Automation and Controls Network (BACnet) data protocol. The testbed will involve approximately 15 NIST personnel already working on related topics with the Smart Grid and Cyber-Physical Systems Program Office, and involved in Smart Grid Interoperability Panel 2.0, Inc. activities [21]

States

At the state level, several states have created legislation to facilitate the development of smart grids. California Senate Bill 17 requires the California Public Utility Commission (California PUC) to create a smart grid deployment plan by July 1, 2001, and electrical corporations must submit a smart grid deployment plan to the California PUC by June 1, 2011. The bill required that standards be adopted for California that complied with standards from NIST, the Gridwise Architecture Council, the International Electrical and Electronics Engineers, the North America Electric Reliability Cooperation, and FERC. If utilities fail to meet the standards or present a plan to meet them by the June 1 deadline, they will be vulnerable to millions of dollars in penalties.[ needs update ] In Illinois, utilities must reduce peak load by 0.1% every year for 10 years according to the Illinois Power Agency Act, Senate Bill 1592. While this does not specifically require the development of smart grids, it has resulted in several state utilities investing in smart grids including the deployment of several hundred thousand smart meters. A similar policy has been enacted in Maryland. According to the EmPOWER Maryland Energy Efficiency Act of 2008, Senate Bill 205, utilities must reduce peak demand by 15% by 2015. The law tasks the Maryland Public Service Commission with determining the effectiveness of smart grid technology and gives it the authority to mandate the deployment of smart grid technology by utilities. In Colorado, the city of Boulder is acting as a case study on smart grid technology. A major concern of the state legislature is the security of information being transmitted over the grid, the findings in Boulder will play a significant role in the development of policy for the rest of the state. [22]

See also

Related Research Articles

<span class="mw-page-title-main">North American Electric Reliability Corporation</span> Non profit Electric Reliability Organization

The North American Electric Reliability Corporation (NERC) is a nonprofit corporation based in Atlanta, Georgia, and formed on March 28, 2006, as the successor to the North American Electric Reliability Council. The original NERC was formed on June 1, 1968, by the electric utility industry to promote the reliability and adequacy of bulk power transmission in the electric utility systems of North America. NERC's mission states that it "is to assure the effective and efficient reduction of risks to the reliability and security of the grid".

<span class="mw-page-title-main">Automatic meter reading</span> Transmitting consumption data from a utility meter to the utility provider

Automatic meter reading (AMR) is the technology of automatically collecting consumption, diagnostic, and status data from water meter or energy metering devices and transferring that data to a central database for billing, troubleshooting, and analyzing. This technology mainly saves utility providers the expense of periodic trips to each physical location to read a meter. Another advantage is that billing can be based on near real-time consumption rather than on estimates based on past or predicted consumption. This timely information coupled with analysis can help both utility providers and customers better control the use and production of electric energy, gas usage, or water consumption.

<span class="mw-page-title-main">Public Utility Regulatory Policies Act</span>

The Public Utility Regulatory Policies Act is a United States Act passed as part of the National Energy Act. It was meant to promote energy conservation and promote greater use of domestic energy and renewable energy. The law was created in response to the 1973 energy crisis, and one year in advance of a second energy crisis.

<span class="mw-page-title-main">Regional transmission organization (North America)</span> Electric power coordinator

A regional transmission organization (RTO) in the United States is an electric power transmission system operator (TSO) that coordinates, controls, and monitors a multi-state electric grid. The transfer of electricity between states is considered interstate commerce, and electric grids spanning multiple states are therefore regulated by the Federal Energy Regulatory Commission (FERC). The voluntary creation of RTOs was initiated by FERC Order No. 2000, issued on December 20, 1999. The purpose of the RTO is to promote economic efficiency, reliability, and non-discriminatory practices while reducing government oversight.

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response, a type of energy demand management, seeks to adjust in real-time the demand for power instead of adjusting the supply.

<span class="mw-page-title-main">Smart meter</span> Online recorder of utility usage

A smart meter is an electronic device that records information—such as consumption of electric energy, voltage levels, current, and power factor—and communicates the information to the consumer and electricity suppliers. Such an advanced metering infrastructure (AMI) differs from automatic meter reading (AMR) in that it enables two-way communication between the meter and the supplier.

<span class="mw-page-title-main">Jon Wellinghoff</span>

Jon B. Wellinghoff is an American attorney who served as the chairman of the Federal Energy Regulatory Commission (FERC) from 2009 to 2013. The FERC is a U.S. government agency that regulates the interstate transmission of electricity, natural gas, and oil. The FERC also reviews proposals to build liquefied natural gas (LNG) terminals and interstate natural gas pipelines and licenses hydropower projects.

<span class="mw-page-title-main">Smart grid</span> Type of electrical grid

A smart grid is an electrical grid which includes a variety of operation and energy measures including:

<span class="mw-page-title-main">Electrical grid</span> Interconnected network for delivering electricity from suppliers to consumers

An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of:

The Office of Electricity (OE) is a program office within the United States Department of Energy. The mission of OE is to work "closely with [...] private and public partners" and "lead the Department’s efforts to ensure that the Nation’s most critical energy infrastructure is secure and resilient." It does this through research and development of new technologies and overseeing the Federal and state electricity policies and programs for planning and market operations.

Support for the smart grid in the United States became federal policy with passage of the Energy Independence and Security Act of 2007. The law set out $100 million in funding per fiscal year from 2008 to 2012, established a matching program to states, utilities and consumers to build smart grid capabilities, and created a Grid Modernization Commission to assess the benefits of demand response and to recommend needed protocol standards. The law also directed the National Institute of Standards and Technology to develop smart grid standards, which the Federal Energy Regulatory Commission (FERC) would then promulgate through official rulemakings.

The National Association of Regulatory Utility Commissioners (NARUC) is the national association representing the U.S. state public service commissioners who regulate essential utility services, including energy, telecommunications, and water. Founded in 1889, the Association is a resource for its members and the regulatory community, providing a venue to set and influence public policy, share best practices, and foster solutions to improve regulation.

Open Automated Demand Response (OpenADR) is a research and standards development effort for energy management led by North American research labs and companies. The typical use is to send information and signals to cause electrical power-using devices to be turned off during periods of high demand.

The term smart grid is most commonly defined as an electric grid that has been digitized to enable two way communication between producers and consumers. The objective of the smart grid is to update electricity infrastructure to include more advanced communication, control, and sensory technology with the hope of increasing communication between consumers and energy producers. The potential benefits from a smart grid include increased reliability, more efficient electricity use, better economics, and improved sustainability.

<span class="mw-page-title-main">IEEE Smart Grid</span>

IEEE Smart Grid is an initiative launched by IEEE to help provide expertise and guidance for individuals and organizations involved in the modernization and optimization of the power grid, better known as the "smart grid". IEEE Smart Grid encompasses an array of activities, including development of new smart grid-related standards, best practices, publications, and conferences and educational opportunities.

The UCLA Smart Grid Energy Research Center (SMERC), located on the University of California Los Angeles (UCLA) campus, is an organization focused on developing the next generation of technologies and innovation for Smart Grid. SMERC partners with government agencies, technology providers, Department of Energy (DOE) research labs, universities, utilities, policymakers, electric vehicle manufacturers, and appliance manufacturers. These partnerships provide SMERC with diverse capabilities and exceptional, mature leadership.

Smart Grid Interoperability Panel or SGIP is an organization that defines requirements for a smarter electric grid by driving interoperability, the use of standard, and collaborating across organizations to address gaps and issue hindering the deployment of smart grid technologies.

Transactive energy refers to the economic and control techniques used to manage the flow or exchange of energy within an existing electric power system in regards to economic and market based standard values of energy. It is a concept that is used in an effort to improve the efficiency and reliability of the power system, pointing towards a more intelligent and interactive future for the energy industry.

Electric grid security in the US refer to the activities that utilities, regulators, and other stakeholders play in securing the national electricity grid. The American electrical grid is going through one of the largest changes in its history, which is the move to smart grid technology. The smart grid allows energy customers and energy providers to more efficiently manage and generate electricity. Similar to other new technologies, the smart grid also introduces new concerns about security.

References

  1. IEEE. "About the Smart Grid".
  2. Updegrove, Andrew (October 2009). "Standards and the Smart Grid: The U.S. Experience". Standards Today.
  3. Department of Energy. "2030: A National Vision for Electricity's Second 100 Years" (PDF).
  4. Department of Energy. "A Vision for the Modern Grid" (PDF).
  5. Department of Energy. "Evolution and Progress of Smart Grid Development at the Department of Energy" (PDF).
  6. "Obama, analysts, VCs see 2009 as the year of the Smart Grid... DR is Smart Grid's killer app says FERC... Smart Grid means more jobs... How smart should Smart Grid be?".
  7. Calma, Justine (2021-05-12). "The grid needs to smarten up to reach clean energy goals". The Verge. Retrieved 2021-05-13.
  8. Rokach, Joshua (October 2010). "Unlocking the Smart Grid". The Electricity Journal. 23 (8): 63–71. doi:10.1016/j.tej.2010.09.002.
  9. Federal Energy Regulatory Commission. "Smart Grid Policy" (PDF).
  10. NIST. "George Arnold".
  11. "The NIST Interoperability Framework for the Smart Grid" (PDF).
  12. "PL 110-140". www.govinfo.gov.
  13. 1 2 3 "Energy Independence and Security Act of 2007: A Summary of Major Provisions" (PDF). CRS Report for Congress. Congressional Research Service. Archived from the original (PDF) on 2011-04-28. Retrieved 2011-04-18.
  14. 1 2 3 4 5 6 7 8 9 10 11 "Energy Independence and Security Act of 2007 Title XIII" (PDF).
  15. "Abel, A. (2007). Smart grid provisions in H.R. 6, 110th Congress (Order Code RL34288). Washington, DC: Congressional Research Office" (PDF).
  16. Pernick, R. & Wilder, C. (2007). The clean tech revolution: The next big growth and investment opportunity. New York, NY: HarperCollins
  17. Effectively transforming our electric delivery system to a smart grid: Hearing before the Subcommittee on Energy and Environment of the House Committee on Science and Technology. 111th Cong., 1st Sess. (2009).
  18. Department of Energy. (2009). Enhancing the smart grid: Integrating clean distributed and renewable generation. Washington, DC: Office of Electricity Delivery and Energy Reliability. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-21. Retrieved 2011-04-21.{{cite web}}: CS1 maint: archived copy as title (link)
  19. "Smart Grid System Report" (PDF). U.S. Department of Energy. 2009. Archived from the original (PDF) on 2011-07-21. Retrieved 2011-04-21.
  20. "Testimony of Mason W. Emnett, Associate Director, Office of Energy Policy and Innovation, Federal Energy Regulatory Commission Before the Technology and Innovation Subcommittee Of the Committee on Science and Technology United States House of Representatives. 111th Cong. (2010)" (PDF).
  21. "Smart Grid Interoperability Standards". NIST. Retrieved 2011-04-20.
  22. Flick, T. & Morehouse, J (2011). Securing the smart grid: Next generation power grid security. Burlington, MA: Elsevier Inc.