Solar power has been growing rapidly in the U.S. state of California because of high insolation, community support, declining solar costs, and a renewable portfolio standard which requires that 60% of California's electricity come from renewable resources by 2030, with 100% by 2045. [1] Much of this is expected to come from solar power via photovoltaic facilities or concentrated solar power facilities.
At the end of 2023, California had a total of 46,874 MW of solar capacity installed, enough to power 13.9 million homes in the state. California ranked as the highest solar power generating state in the nation, with solar power providing for 28% of the state's electricity generation. [2] The Solar Energy Industries Association predicts that California will increase its solar capacity by over 20,000 MW over the next five years, the second highest increase in solar capacity in the country behind Texas at 41,000 MW. [2]
The state government has created various programs to incentivize and subsidize solar installations, including an exemption from property tax, cash incentives, net metering, streamlined permitting for residential solar, and, in 2020, requiring all new homes have solar panels.
Over the last 20 years, California has been home to a number of the world's largest solar facilities, many of which are located in the Mojave Desert. In 1991, the 354 MW Solar Energy Generating Systems plant (located in San Bernardino County, California) held the title until being bested by the 392 MW Ivanpah Solar Electric Generating System, a solar thermal plant located in San Bernardino County near the Nevada border.
The early to mid 2010s saw the sharpest increase in solar development. [3] By the end of 2013, California had 490 MW of concentrated solar power and 5,183 MW of photovoltaics capacity in operation. [4]
In 2014, the 550 MW Topaz Solar Farm became the new "world's largest operational" solar facility and went online in San Luis Obispo County, California. A second 550 MW facility, Desert Sunlight Solar Farm, went online in Riverside County in 2014, constructed by First Solar. In June 2015, the 579 MW Solar Star facility went online, becoming the new largest operational solar facility and making California host to the three largest photovoltaic solar facilities in the world. [5] There are several proposals for even larger facilities seeking regulatory approval in California, such as the 2.7 GW Westlands Solar Park.
In 2014, California led the nation in the number of homes which have solar panels installed, totaling over 230,000. [6] Many were installed because of the Million Solar Roof Initiative. [7]
In December 2017, the Solar on Multifamily Affordable Housing (SOMAH) program was approved by the California Public Utilities Commission. The program plans to allocate one billion dollars from the state's greenhouse gas cap-and-trade program to incentivize owners of affordable, multi-family buildings to install solar, with a goal of adding 300 MW of capacity by 2030. [8]
In May 2018, the California Energy Commission (CEC) required that nearly all new homes (both single-family and multi-family) under four stories be built with rooftop photovoltaic solar panels . [9] Developers can also receive approval from the CEC to subscribe new homes to local community solar generation. [10] In early 2020, the Sacramento Municipal Utility District (SMUD) was approved to provide community solar to new homes in Sacramento. [11] [12]
Solar systems with battery storage are now much more valuable than systems without battery storage, mostly because new solar generation exacerbates the duck curve (varying power supply from traditional power plants). [14] Solar production causes fossil-fuel power plants to be turned down to minimum during the day, but when solar production stops in the evening peaker plants must quickly ramp generation by 5GW an hour to supply peak demand. [15] New solar generation only displaces other solar generation and increases the supply ramping needed by peaker plants, which is expensive for utilities. [16] Battery storage systems flatten the duck curve by storing solar and wind energy at non-peak hours and discharging it at peak hours. California's most recent net energy metering policy now incentivizes systems with battery storage more than solar systems with no installed storage.
Housing affordability is also a concern with this measure, an area where California already struggles greatly. [17] According to a 2017 survey conducted by the U.S. Census Bureau, 37.8% of California homeowners with mortgages are "cost-burdened," with housing costs exceeding 30% of the household income, and 16.3% face housing costs exceeding 50% of the household income. [18] The CEC predicts that the requirement of photovoltaic panels will increase the cost of a newly built single-family home by about $40 per month in extra mortgage payments, but eventually save about $80 on electricity costs. [19] The CEC released data showing that the system would more than pay for itself, however charitable organizations such as Habitat for Humanity have expressed their concerns as this will require the organization to receive additional donations to pay for the photovoltaic panels that the group would be required to install on every house it builds. [20]
In 2011, California's goal to install 3,000 MW of distributed generation by 2016 was expanded to 12,000 MW by 2020. [21] California has more photovoltaics installed than any other federal state, and 48% of the U.S. total in 2010. For the first time in 2008 the installed photovoltaics exceeded the state's 354 MW of solar thermal (CSP). [22] [23] There are plans to build over 15,000 MW of utility scale photovoltaic plants in California. [24] At the end of 2012, small systems of less than 10 kWp were averaging $5.39/W, and large systems of over 500 kWp were averaging $2.77/W. [25]
California has the technical potential to install 128.9 GW of rooftop solar panels, which would generate 194,000 GWh/year, about 74% of the total electricity used in California in 2013. This is environmentally desirable because it would conserve large swaths of desert by placing panels atop preexisting structures instead. However, this would supply three to four times peak midday demand, requiring output to be stored or exported on sunny days. [26]
MWp of Installed Generating Capacity [27] |
|
California has several large concentrated solar power plants.
The Ivanpah Solar Electric Generating System (392 MW), located 40 miles (60 km) southwest of Las Vegas and developed by BrightSource Energy and Bechtel, is the world's largest solar thermal power project. [44] [45] The project has received a $1.375 billion loan guarantee from the United States Department of Energy. It deploys 347,000 heliostat mirrors focusing solar energy on boilers located on centralized solar power towers. [44]
The Genesis Solar Energy Project is an operational 250 MW solar thermal power station located in Riverside County, California. It features a parabolic trough design and is run by NextEra Energy Resources. [46]
Total operational installed gross power is 1,313 MW (1346 MW until 2014). Production in 2015 was 2,309 GWh, 71.2% of U.S. total solar thermal generation. [47]
South Belridge Oil Field, near Bakersfield, California, a solar EOR facility that is projected to eliminate 376,000 metric tons of carbon emissions. It was announced in November 2017 as a joint venture between GlassPoint Solar and Aera Energy. [48]
In 2012, the Bureau of Land Management gave priority status to 5 solar project proposals in California. [34] The 750 MW McCoy Solar Energy Project was proposed by NextEra, though only 1/3 of that wattage was ever installed. The remaining development of the project is currently[ when? ] on hold. The 100 MW Desert Harvest project has been proposed by enXco. The 664 MW Calico Solar Energy Project was redesigned by K Power but later abandoned. [49]
The Energy Information Administration (EIA) provides California electricity generation data from 2001. Below is a table of annual and monthly utility-scale solar generation, including thermal and PV generation, alongside the percentage of total annual CA energy generation and percentage of all US solar generation.
Year | % of generation | Utility-scale solar generation in California (GWh) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA total | US solar | Total | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
2001 | 543 | 7 | 13 | 31 | 39 | 81 | 91 | 92 | 85 | 65 | 21 | 14 | 4 | ||
2002 | 555 | 11 | 24 | 44 | 46 | 58 | 96 | 86 | 75 | 53 | 31 | 28 | 4 | ||
2003 | 533 | 13 | 18 | 50 | 60 | 68 | 91 | 62 | 62 | 56 | 36 | 14 | 4 | ||
2004 | 569 | 12 | 10 | 53 | 56 | 81 | 88 | 82 | 73 | 60 | 33 | 15 | 8 | ||
2005 | 538 | 8 | 12 | 37 | 57 | 80 | 87 | 71 | 75 | 60 | 37 | 12 | 2 | ||
2006 | 495 | 12 | 19 | 32 | 51 | 69 | 68 | 60 | 81 | 53 | 32 | 15 | 3 | ||
2007 | 557 | 13 | 19 | 48 | 53 | 83 | 81 | 76 | 64 | 57 | 41 | 20 | 2 | ||
2008 | 669 | 12 | 28 | 56 | 71 | 76 | 100 | 90 | 85 | 73 | 46 | 21 | 11 | ||
2009 | 647 | 2 | 22 | 55 | 73 | 80 | 81 | 95 | 86 | 69 | 47 | 25 | 12 | ||
2010 | 0.4% | 63.5% | 771 | 2 | 21 | 51 | 75 | 106 | 121 | 117 | 105 | 86 | 39 | 34 | 14 |
2011 | 0.4% | 48.2% | 887 | 1 | 34 | 49 | 82 | 100 | 130 | 112 | 139 | 102 | 81 | 29 | 28 |
2012 | 0.7% | 31.9% | 1,382 | 4 | 36 | 88 | 128 | 176 | 219 | 191 | 152 | 148 | 115 | 72 | 53 |
2013 | 1.9% | 42.8% | 3,813 | 65 | 130 | 228 | 239 | 267 | 356 | 345 | 471 | 460 | 408 | 409 | 435 |
2014 | 5.0% | 54.0% | 9,932 | 358 | 409 | 711 | 842 | 978 | 1,085 | 1,000 | 1,095 | 1,072 | 969 | 809 | 604 |
2015 | 7.53% | 59.5% | 14,813 | 680 | 893 | 1,256 | 1,419 | 1,464 | 1,515 | 1,581 | 1,612 | 1,336 | 1,131 | 1,050 | 876 |
2016 | 9.5% | 52.2% | 18,807 | 716 | 1,195 | 1,316 | 1,545 | 1,924 | 1,851 | 2,167 | 2,145 | 1,911 | 1,609 | 1,389 | 1,039 |
2017 | 11.8% | 45.7% | 24,352 | 972 | 1,087 | 2,035 | 2,158 | 2,726 | 2,970 | 2,715 | 2,511 | 2,347 | 2,165 | 1,335 | 1,331 |
2018 | 13.7% | 40.5% | 26,986 | 1,242 | 1,751 | 2,005 | 2,509 | 3,024 | 3,253 | 2,814 | 2,837 | 2,689 | 2,124 | 1,505 | 1,233 |
2019 | 14.0% | 39.4% | 28,331 | 1,265 | 1,493 | 2,266 | 2,629 | 2,739 | 3,340 | 3,366 | 3,309 | 2,723 | 2,494 | 1,625 | 1,082 |
2020 | 15.0% | 33.9% | 30,271 | 1,534 | 2,074 | 2,031 | 2,561 | 3,395 | 3,388 | 3,824 | 3,181 | 2,498 | 2,297 | 1,936 | 1,552 |
2021 | 17.7% | 30.2% | 34,863 | 1,687 | 2,224 | 2,869 | 3,597 | 3,920 | 3,813 | 3,657 | 3,647 | 3,180 | 2,646 | 2,119 | 1,504 |
2022 | 19.2% | 27.0% | 39,320 | 2,098 | 2,474 | 3,242 | 3,651 | 4,218 | 4,456 | 4,288 | 3,987 | 3,466 | 3,221 | 2,387 | 1,832 |
2023 | % | % | 32,171 | 1,953 | 2,327 | 2,764 | 3,744 | 4,244 | 4,475 | 4,701 | 4,281 | 3,682 |
Beginning with 2014, the EIA has estimated distributed solar photovoltaic generation and distributed solar photovoltaic capacity.
Year | Summer Capacity (MW) | Electric energy (GWh) |
---|---|---|
2014 | 2350 | 4,674 |
2015 | 3391.4 | 6,014 |
2016 | 5257.9 | 8,230 |
2017 | 6617.8 | 10,605 |
2018 | 7879.5 | 12,919 |
2019 | 15,162 | |
2020 | 17,407 | |
2021 | 19,828 | |
2022 | 23,094 |
On May 13, 2017, the California Independent System Operator (CAISO) reported that the state had broken a new renewable energy record, with non-hydro renewables providing 67.2% of the total electricity on the ISO's grid (13.5% was provided by hydropower). The ISO reported that solar was providing approximately 17.2% of the total electricity.
On March 5, 2018, at around 1:00 pm, utility-scale solar energy met 50% of California's total electrical power demand for the first time. [54]
On May 2, 2022, CAISO reported that California's electrical demand was met 100% by renewable energy sources for the first time. This was maintained for nearly 15 minutes. During this period, 12,391 of the 18,000 megawatts (68.8%) of demand were generated by PV systems alone. [55]
Since 1980, the state government excluded solar installations as taxable improvements on a property. [56] [57] This has resulted in many counties seeing no tax benefit from solar farm installations, with some like Kern County stating that they had lost $110 million in property taxes over a decade due to this policy. [56] [57]
State legislators felt that the policy was necessary because otherwise the property taxes on solar farms would be four to seven times higher in California than neighboring states, and would thereby incentive all new development of solar to occur out-of-state. [56] : 1
California's renewable portfolio standard (RPS) sets a minimum of renewable generation from load-serving entities in the state. The most recent RPS was set under senate bill 100 and went into effect January 1, 2019. SB 100 mandates that 60% of California's electricity will be generated by renewable resources by 2030, and 100% will be generated by carbon-free sources by 2045. [58] Much of this is expected to come from solar power.
According to a report by the California Public Utilities Commission (CPUC), California failed to meet the 20% renewables by 2010 target. In 2010, Southern California Edison produced 19.4% of its electricity from renewable sources, Pacific Gas and Electric Company generated 17.7% of the electricity it sold from renewable sources, and San Diego Gas & Electric generated 11.9% of its electricity from renewable sources. [59]
As of October 2020, California had 31,288 MW [2] of solar and 5,830 MW [60] of wind farms. California adopted feed-in tariffs, a tool similar to what Europe has been using, to encourage the solar power industry. Proposals were raised aiming to create a small-scale solar market in California that brings the benefits of the German market, such as distributed generation, which avoids the need for transmission because power is generated close to where it is used, and avoid the drawbacks such as excessively high payments that could become a burden on utility customers. [61]
The California Solar Initiative is a 2006 initiative to install 3,000 MW of additional solar power by 2016. Included in it is the Million Solar Roof Initiative. [62] In 2011, this goal was expanded to 12,000 MW by 2020. [63] As part of Governor Arnold Schwarzenegger's Million Solar Roofs Program, California has set a goal to create 1,940 megawatts [64] of new, solar-produced electricity by 2016 – moving the state toward a cleaner energy future and helping lower the cost of solar systems for consumers. The California Solar Initiative has "a total budget of $2.167 billion between 2007 and 2016 and a goal to install approximately 1,940 MW of new solar generation capacity." [65] [ dead link ]
According to the CPUC, homeowners, businesses, and local governments installed 158 MW of solar photovoltaics (PV) in 2008, doubling the 78 MW installed in 2007, giving California a cumulative total of 441 MW of distributed solar PV systems, the highest in the country. As of August 2016, 4,216 MW have been installed in 537,647 projects. The average cost of systems less than 10 kW is $5.33/watt and $4.38/watt for systems over 10 kW. [66] Of these, 3,391 MW were rooftop solar in 2015. [67]
The CSI initially offered cash incentives on solar PV systems of up to $2.50 per AC watt. These incentives, combined with federal tax incentives, could cover up to 50% of the total cost of a solar system. The incentive program was designed so that the incentives would reduce in steps based on the amount of solar installed in each of 6 categories. There are separate steps for residential and non-residential customers in the territories of each of the State's 3 investor-owned utilities. As of July 2012, the rebates range from $0.20 to $0.35 per AC watt for residential and commercial systems and from $0.70 to $1.10 for systems for non-profits and government entities. [65]
There are many financial incentives to support the use of renewable energy in other US states. [68] CSI provides more than $2 billion worth of incentives to customers for installing photovoltaic, [69] and electricity displacing solar thermal [70] systems in the three California Investor-Owned Utilities service territories.
The program was authorized by the California Public Utilities Commission and by the Senate Bill 1 (SB 1):
Responsibility for administration of the CSI Program is shared by Investor-Owned Utilities:
Residential installation starts in early 2007 fell off sharply in SCE territory because of the disincentives inherent in SB1, requiring time-of-use (TOU) tariffs, with the result that homeowners who install panels may find their electric bill increasing rather than decreasing. The governor and legislature moved quickly to pass AB1714 (June 2007) to delay the implementation of this rule until 2009.
California's net energy metering program incentivizes distributed solar generation and battery storage by compensating customers for excess energy they export to the electric grid. A consumer's excess solar generation is bought by the local utility at or below retail pricing when it is exported, allowing consumers to "store" their own generation in the grid to be used at any time. [71]
Net metering was first implemented in 1995 in the passing of Senate Bill (SB) 656, known now as NEM1.
Out of 38 states evaluated in a rating of state net metering policy in 2007, California was one of five states to receive an A. [72] IREC best practices, based on experience, recommends no limits to net metering, individual or aggregate, and perpetual roll over of kWh credits. [73] As California was rapidly approaching the 5% aggregate limit, a May 24, 2012, ruling by the CPUC clarified the calculation of the limit, and requested a report on the cost of net metering. [74] [75] California subsequently uncapped the net metering program. [76] Typically states have raised or eliminated their aggregate limits before they were reached. [77] By 2011, 16 states including California received an A for net metering. [78]
In 2013, Assembly Bill (AB) 327 mandated that a successor to the existing NEM1, NEM2, should be adopted by the CPUC. NEM2 went into effect in SDG&E's service territory on June 29, 2016, PG&E's service territory on December 15, 2016, and SCE's service territory on July 1, 2017. [79] One of NEM2's key objectives was to ensure continued growth of distributed solar by removing the 1,000kW limit on new systems. While NEM2 continued to compensate customers with full retail pricing, it also included three charges: a one-time interconnection fee, non-bypassable charges that fund low-income customers, energy efficiency programming and other energy programs, and a time-of-use (TOU) rate. [80]
California's current net metering policy is outlined in the Net Billing Tariff, [81] known as NEM3, which went into effect April 15th, 2023. [82] The Tariff takes into account proposals from various parties, including a lookback study on NEM 2.0 and 1.0. [79] While in NEM1 and 2 customers received credits for energy exported and deducted those credits when importing electricity from the grid at a nearly 1:1 exchange, under NEM3 energy exports are now valued at the avoided cost to the utility — the wholesale price it takes the utility to produce energy. Credits are typically $0.05 per kWh, but when electricity demand is high it can spike up to $2.87 per kWh. [82]
California's net metering policy was rated 19th by Solar Reviews in 2021, California receives a B only because electricity credits include charges and don't pay at full retail rate but at marginal cost. [83]
In March 2008, Culver City established the first in the nation mandatory solar photovoltaic requirement, which requires an installation of 1 KW of solar photovoltaic power per 10,000 square feet (930 m2) of new or major remodeled commercial building area. [84]
In March 2013, Lancaster, California became the first U.S. city to mandate the inclusion of solar panels on new homes, requiring that "every new housing development must average 1 kilowatt per house." [85] In May 2013, Sebastopol followed suit, requiring new buildings include either 2 W/sq ft (21.7 W/m2) of insulated building space of photovoltaics, or enough to provide 75% of the expected annual electricity use. [86]
Since January 1, 2014, California law requires all new buildings less than ten stories tall be "solar ready". [87]
In April 2016, San Francisco mandated that all new buildings less than ten stories tall include solar panels or solar water heating covering at least 15% of the roof, beginning January 1, 2017. [88]
In 2018, the State of California Building Standards Commission approved solar installation requirements for all new residential buildings with three stories or fewer. This requirement took effect in 2020. [89]
California governor Jerry Brown signed a streamlined permitting bill (AB 2188) for residential solar systems on September 22, 2014. AB 2188 has four major provisions designed to reduce red-tape associated with local solar permits and requires that, by the end of September 2015, all California cities and counties must "adopt an ordinance that creates an expedited, streamlined permitting process for residential rooftop solar energy systems of less than 10 kilowatts in size." [90] Research and industry reports project the bill could reduce the cost of installing a typical residential solar system in the state by over $1,000. [91]
Using a 20-year property assessment known as PACE financing, the city of Berkeley had a successful pilot program from 2008 to 2009 as the first city in the country to allow residents to obtain solar power without any initial payment. In the plan, property owners paid as much in increased property taxes as they save in energy costs, allowing them to install the panels for free at no cost to the city. Thirty eight projects were installed for the pilot stage of the program. [92] PACE financing has spread to 28 states, but is on hold in many due to objections by Freddie Mac and Fannie Mae, including in Berkeley (which has not continued the pilot as a result). Legislation has been introduced to require acceptance of PACE financing. [93]
The City of Los Angeles Department of Water and Power initiated a program on January 11, 2013, to pay up to 17 cents/kWh for electricity generated by up to 100 MW of solar power in a feed-in tariff program. 20 MW is reserved for small projects of less than 150 kW each. The program could be expanded to 150 MW in March. [94]
Year | Available |
---|---|
2013 | 40 MW |
2014 | 40 MW |
2015 | 20 MW |
Tier | Available | Small systems | Feed in tariff |
---|---|---|---|
1 | 10 MW | 2 MW | 17 cents/kWh |
2 | 25 MW | 5 MW | 16 cents/kWh |
3 | 50 MW | 10 MW | 15 cents/kWh |
4 | 75 MW | 15 MW | 14 cents/kWh |
5 | 100 MW | 20 MW | 13 cents/kWh |
Energy storage is becoming a more prominent issue because photovoltaic solar panels can only generate electricity during daylight hours and thermal solar installations can only store energy for up to 10 hours, leaving a window in which the state's energy production must be generated from other sources (natural gas, wind, coal, or nuclear). To remedy this, different sorts of power storage solutions have been proposed such as batteries, compressed air, and ice generation. [95]
In April 2018, The San Diego Union Tribune reported that Recurrent Energy (a subsidiary of Canadian Solar) had proposed a large battery, a 350 MW system, to be installed alongside the proposed Crimson Solar Project. The battery will match the proposed facility's nameplate capacity, and is several times larger than the 130 MW Hornsdale Power Reserve, the largest lithium battery in existence, which was created by Tesla and is located in South Australia. [96]
Another issue is overproduction which is most common during the spring months, when electricity production from wind power is high, but demand from heating and cooling is low. [97] California's solar production was so vast that by 2017, California had to pay Arizona and other states in the region to accept some of its electricity during peak production hours to provide relief to its grid. [98]
California also has aggressive goals when it comes to zero emissions vehicles (ZEVs), and the most prominent type is the electric car, which relies on grid power to charge its battery. Plug-in hybrid cars are also very popular in the state. These types of vehicles add to the demand and burden placed on the electrical grid, which was not designed to support the larger electrical loads required by electric vehicles. [99] One potential solution is to bypass most of the grid with the installation of rooftop solar panels for daytime charging and making use of home energy storage at night. Some electric companies will also provide discounted rates for car owners who charge their vehicles at night when demand is lower. Some cars can be programmed to stagger their charging cycle throughout the night. This leads to a steady rate of charging instead of a large spike in the early evening when most commuters return home. [100]
The majority of Californians in desert country support large-scale solar development, according to a 2012 survey conducted on behalf of BrightSource Energy. The survey of more than 1,000 people was conducted throughout Imperial, Inyo, Kern, Riverside, San Bernardino counties in California, where many utility-scale solar projects are underway or planned. Survey results showed that nearly four out of five (almost 80 percent) people strongly supported development of solar power in their communities. The survey also found that the majority of people were concerned with climate change. It also found that two-thirds of respondents think renewable energy is important to California's future and that the state and federal government should help provide incentives for renewable energy projects. [101]
Net metering is an electricity billing mechanism that allows consumers who generate some or all of their own electricity to use that electricity anytime, instead of when it is generated. This is particularly important with renewable energy sources like wind and solar, which are non-dispatchable. Monthly net metering allows consumers to use solar power generated during the day at night, or wind from a windy day later in the month. Annual net metering rolls over a net kilowatt-hour (kWh) credit to the following month, allowing solar power that was generated in July to be used in December, or wind power from March in August.
Many countries and territories have installed significant solar power capacity into their electrical grids to supplement or provide an alternative to conventional energy sources. Solar power plants use one of two technologies:
Solar power is a major contributor to electricity supply in Australia. As of December 2023, Australia's over 3.69 million solar PV installations had a combined capacity of 34.2 GW photovoltaic (PV) solar power. In 2019, 59 solar PV projects with a combined capacity of 2,881 MW were either under construction, constructed or due to start construction having reached financial closure. Solar accounted for 12.4% of Australia's total electrical energy production in 2021.
India's solar power installed capacity was 87.21 GW AC as of 31 July 2024. India is the third largest producer of solar power globally.
According to data from the US Energy Information Administration, renewable energy accounted for 8.4% of total primary energy production and 21% of total utility-scale electricity generation in the United States in 2022.
Financial incentives for photovoltaics are incentives offered to electricity consumers to install and operate solar-electric generating systems, also known as photovoltaics (PV).
A feed-in tariff is a policy mechanism designed to accelerate investment in renewable energy technologies by offering long-term contracts to renewable energy producers. This means promising renewable energy producers an above-market price and providing price certainty and long-term contracts that help finance renewable energy investments. Typically, FITs award different prices to different sources of renewable energy in order to encourage the development of one technology over another. For example, technologies such as wind power and solar PV are awarded a higher price per kWh than tidal power. FITs often include a "digression": a gradual decrease of the price or tariff in order to follow and encourage technological cost reductions.
Solar power includes solar farms as well as local distributed generation, mostly on rooftops and increasingly from community solar arrays. In 2023, utility-scale solar power generated 164.5 terawatt-hours (TWh), or 3.9% of electricity in the United States. Total solar generation that year, including estimated small-scale photovoltaic generation, was 238 TWh.
New Jersey has over 4,700 MW of installed solar power capacity as of January 2024, which provides more than 7% of the state's electricity consumption. The's state's growth of solar power is aided by a renewable portfolio standard that requires that 22.5% of New Jersey's electricity come from renewable resources by 2021 and 50% by 2030, by incentives provided for generation of solar power, and by one of the most favorable net metering standards in the country, allowing customers of any size array to use net metering, although generation may not exceed annual demand. As of 2018, New Jersey has the sixth-largest installed solar capacity of all U.S. states and the largest installed solar capacity of the Northeastern States.
Solar power in Arizona has the potential to, according to then-Governor Janet Napolitano, make Arizona "the Persian Gulf of solar energy". In 2012, Arizona had 1,106 MW of photovoltaic (PV) solar power systems, and 6 MW of concentrated solar power (CSP), bringing the total to over 1,112 megawatts (MW) of solar power. As an example, the Solana Generating Station, a 280 MW parabolic trough solar plant, when commissioned in 2013, was the largest parabolic trough plant in the world and the first U.S. solar plant with molten salt thermal energy storage.
The energy sector in Hawaii has rapidly adopted solar power due to the high costs of electricity, and good solar resources, and has one of the highest per capita rates of solar power in the United States. Hawaii's imported energy costs, mostly for imported petroleum and coal, are three to four times higher than the mainland, so Hawaii has motivation to become one of the highest users of solar energy. Hawaii was the first state in the United States to reach grid parity for photovoltaics. Its tropical location provides abundant ambient energy.
A rooftop solar power system, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters battery storage systems, charge controllers, monitoring systems, racking and mounting systems, energy management systems, net metering systems, disconnect switches, grounding equipment, protective devices, combiner boxes, weatherproof enclosures and other electrical accessories.
A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system designed for the supply of merchant power. They are different from most building-mounted and other decentralized solar power because they supply power at the utility level, rather than to a local user or users. Utility-scale solar is sometimes used to describe this type of project.
Solar power in Mexico has the potential to produce vast amounts of energy. 70% of the country has an insolation of greater than 4.5 kWh/m2/day. Using 15% efficient photovoltaics, a square 25 km (16 mi) on each side in the state of Chihuahua or the Sonoran Desert could supply all of Mexico's electricity.
Solar power in Florida has been increasing, as the cost of solar power systems using photovoltaics (PV) has decreased in recent years. Florida has low electricity costs compared with other states, which makes individual solar investment less attractive. Florida ranks ninth nationally in solar resource strength according to the National Renewable Energy Laboratory and tenth in solar generation by the Solar Energy Industries Association.
Solar power in Massachusetts has been increasing rapidly, due to Section 1603 grants for installations that began before December 31, 2011, and the sale of SRECs for $0.30/kWh, which allows payback for the system within 5 or 6 years, and generates income for the life of the system. For systems installed after December 31, 2011, and before December 31, 2016, the 30% tax grant becomes a 30% tax credit. There has been an appeal to the Congress to extend the 1603 program, the grant program, for an additional year.
Solar power in South Africa includes photovoltaics (PV) as well as concentrated solar power (CSP). As of July 2024, South Africa had 2,287 MW of installed utility-scale PV solar power capacity in its grid, in addition to 5,791 MW of rooftop solar and 500 MW of CSP. Installed capacity is expected to reach 8,400 MW by 2030.
Solar power in New Hampshire provides a small percentage of the state's electricity. State renewable requirements and declining prices have led to some installations. Photovoltaics on rooftops can provide 53.4% of all electricity used in New Hampshire, from 5,300 MW of solar panels, and 72% of the electricity used in Concord, New Hampshire. A 2016 estimate suggests that a typical 5 kW system costing $25,000 before credits and utility savings will pay for itself in 9 years, and generate a profit of $34,196 over the rest of its 25-year life. A loan or lease provides a net savings each year, including the first year. New Hampshire has a rebate program which pays $0.75/W for residential systems up to 5 kW, for up to 50% of the system cost, up to $3,750. However, New Hampshire's solar installation lagged behind nearby states such as Vermont and New York, which in 2013 had 10 times and 25 times more solar, respectively.
Solar power in Vermont provides almost 11% of the state's in-state electricity production as of 2018. A 2009 study indicated that distributed solar on rooftops can provide 18% of all electricity used in Vermont. A 2012 estimate suggests that a typical 5 kW system costing $25,000 before credits and utility savings will pay for itself in 10 years, and generate a profit of $34,956 over the rest of its 25-year life.
California produces more renewable energy than any other state in the United States except Texas. In 2018, California ranked first in the nation as a producer of electricity from solar, geothermal, and biomass resources and fourth in the nation in conventional hydroelectric power generation. As of 2017, over half of the electricity (52.7%) produced was from renewable sources.
California is ready to spend $1 billion over the next decade on rooftop solar installation for low-income residents. In December, the California Public Utilities Commission (CPUC) approved the creation of the Solar on Multifamily Affordable Housing (SOMAH) program. Funded by the statewide greenhouse gas cap-and-trade program, it will provide $100 million in annual solar installation incentives for the owners of affordable multifamily buildings.
California has extended a property tax exclusion for new solar energy systems to incentivize the construction of large-scale solar plants to meet the state's electrification goals. Gov. Gavin Newsom signed Senate Bill 1340 on Sunday, continuing a property tax exclusion for new solar systems until the end of 2026. ... The exclusion continues what has been California law, in some form, since 1980.
Hawk is also frustrated that solar farms don't pay property taxes — an exemption recently extended by state lawmakers.