Sudarsky's gas giant classification

Last updated
Sudarsky classification as used in Celestia.
Class-i cubicapoc.png
Class I
Class-ii cubicapoc.png
Class II
Class-iii cubicapoc.png
Class III
Class-iv cubicapoc.png
Class IV
Class-v cubicapoc.png
Class V

Sudarsky's classification of gas giants for the purpose of predicting their appearance based on their temperature was outlined by David Sudarsky and colleagues in the paper Albedo and Reflection Spectra of Extrasolar Giant Planets [1] and expanded on in Theoretical Spectra and Atmospheres of Extrasolar Giant Planets, [2] published before any successful direct or indirect observation of an extrasolar planet atmosphere was made. It is a broad classification system with the goal of bringing some order to the likely rich variety of extrasolar gas-giant atmospheres.

Contents

Gas giants are split into five classes (numbered using Roman numerals) according to their modeled physical atmospheric properties. In the Solar System, only Jupiter and Saturn are within the Sudarsky classification, and both are Class I. The appearance of planets that are not gas giants cannot be predicted by the Sudarsky system, for example terrestrial planets such as Earth and Venus, or ice giants such as Uranus (14 Earth masses) and Neptune (17 Earth masses).[ citation needed ]

Background

The appearance of extrasolar planets is largely unknown because of the difficulty in making direct observations. In addition, analogies with planets in the Solar System can apply to few of the extrasolar planets known because most are wholly unlike any of our planets, for example, the hot Jupiters.

Bodies that transit their star can be spectrographically mapped, for instance HD 189733 b. [3] That planet has further been shown to be blue with an albedo greater (brighter) than 0.14. [4] Most planets so mapped have been large and close-orbiting "hot Jupiters".

Speculation on the appearances of unseen extrasolar planets currently relies upon computational models of the likely atmosphere of such a planet, for instance how the atmospheric temperature–pressure profile and composition would respond to varying degrees of insolation.

Planetary classes

Class I: Ammonia clouds

Jupiter New Horizons.jpg
Saturn during Equinox.jpg
Jupiter and Saturn, two Sudarsky class I gas giants.

Gaseous giants in this class have appearances dominated by ammonia clouds. These planets are found in the outer regions of a planetary system. They exist at temperatures less than about 150 K (−120 °C; −190 °F). The predicted Bond albedo of a class I planet around a star like the Sun is 0.57, compared with a value of 0.343 for Jupiter [5] and 0.342 for Saturn. [6] The discrepancy can be partially accounted for by taking into account non-equilibrium condensates such as tholins or phosphorus, which are responsible for the coloured clouds in the Jovian atmosphere, and are not modelled in the calculations.

The temperatures for a class I planet requires either a cool star or a distant orbit. The former may mean the star(s) are too dim to be visible, where the latter may mean the orbits are so large that their effect is too subtle to be detected until several observations of those orbits' complete "years" (cf. Kepler's third law). The increased mass of superjovians would make them easier to observe, however a superjovian of comparable age to Jupiter would have more internal heating, which could push it to a higher class.

Class II: Water clouds

Gaseous giants in class II are too warm to form ammonia clouds; instead their clouds are made up of water vapor. These characteristics are expected for planets with temperatures below around 250 K (−23 °C; −10 °F). [2] Water clouds are more reflective than ammonia clouds, and the predicted Bond albedo of a class II planet around a Sun-like star is 0.81. Even though the clouds on such a planet would be similar to those of Earth, the atmosphere would still consist mainly of hydrogen and hydrogen-rich molecules such as methane.

Sudarsky et al. listed Ægir, Majriti, and Lipperhey as possible Class II planets. [2]

Class III: Cloudless

Gaseous giants with equilibrium temperatures between about 350 K (170 °F, 80 °C) and 800 K (980 °F, 530 °C) do not form global cloud cover, because they lack suitable chemicals in the atmosphere to form clouds. [2] (They would not form sulfuric acid clouds like Venus due to excess hydrogen.) These planets would appear as featureless azure-blue globes because of Rayleigh scattering and absorption by methane in their atmospheres, appearing like Jovian-mass versions of Uranus and Neptune. Because of the lack of a reflective cloud layer, the Bond albedo is low, around 0.12 for a class-III planet around a Sun-like star. They exist in the inner regions of a planetary system, roughly corresponding to the location of Mercury.

Sudarsky et al. listed Samh, Gliese 876 b, and Gliese 876 c as possible Class III planets. [2] Above 700 K (800 °F, 430 °C), sulfides and chlorides might provide cirrus-like clouds. [2]

Class IV: Alkali metals

Above 900 K (630 °C/1160 °F), carbon monoxide becomes the dominant carbon-carrying molecule in a gas giant's atmosphere (rather than methane). Furthermore, the abundance of alkali metals, such as sodium substantially increase, and spectral lines of sodium and potassium are predicted to be prominent in a gas giant's spectrum. These planets form cloud decks of silicates and iron deep in their atmospheres, but this is not predicted to affect their spectrum. The Bond albedo of a class IV planet around a Sun-like star is predicted to be very low, at 0.03 because of the strong absorption by alkali metals. Gas giants of classes IV and V are referred to as hot Jupiters.

Sudarsky et al. listed Galieo as a possible Class IV planet. [2]

HD 209458 b at 1300 K (1000 °C) would be another such planet, with a geometric albedo of, within error limits, zero; and in 2001, NASA witnessed atmospheric sodium in its transit, though less than predicted. This planet hosts an upper cloud deck absorbing so much heat that below it is a relatively cool stratosphere. The composition of this dark cloud, in the models, is assumed to be titanium/vanadium oxide (sometimes abbreviated "TiVO"), by analogy with red dwarfs, but its true composition is yet unknown; it could well be as per Sudarsky. [7] [8]

Class V: Silicate clouds

For the very hottest gas giants, with temperatures above 1400 K (2100 °F, 1100 °C) or cooler planets with lower gravity than Jupiter, the silicate and iron cloud decks are predicted to lie high up in the atmosphere. The predicted Bond albedo of a class V planet around a Sun-like star is 0.55, due to reflection by the cloud decks. At such temperatures, a gas giant may glow red from thermal radiation but the reflected light generally overwhelms thermal radiation. For stars of visual apparent magnitude under 4.50, such planets are theoretically visible to our instruments. [9] Sudarsky et al. listed Dimidium, Saffar, HD 209458 b, and Tau Boötis b as possible Class V planets. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Giant planet</span> Planet much larger than the Earth

A giant planet, sometimes referred to as a jovian planet, is a diverse type of planet much larger than Earth. Giant planets are usually primarily composed of low-boiling point materials (volatiles), rather than rock or other solid matter, but massive solid planets can also exist. There are four such planets in the Solar System: Jupiter, Saturn, Uranus, and Neptune. Many extrasolar giant planets have been identified.

<span class="mw-page-title-main">HD 209458 b</span> Gas giant exoplanet orbiting HD 209458

HD 209458 b is an exoplanet that orbits the solar analog HD 209458 in the constellation Pegasus, some 157 light-years from the Solar System. The radius of the planet's orbit is 0.047 AU, or one-eighth the radius of Mercury's orbit. This small radius results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 °C. Its mass is 220 times that of Earth and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.

<span class="mw-page-title-main">TrES-1b</span> Hot Jupiter orbiting TrES-1 in the constellation of Lyra

TrES-1b is an extrasolar planet approximately 523 light-years away in the constellation of Lyra. The planet's mass and radius indicate that it is a Jovian planet with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, TrES-1 is located very close to its star, and belongs to the class of planets known as hot Jupiters. The planet was discovered orbiting around GSC 02652-01324.

<span class="mw-page-title-main">Gliese 876</span> Star in the constellation Aquarius

Gliese 876 is a red dwarf star 15.2 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after GJ 1061, YZ Ceti, Tau Ceti, and Wolf 1061; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.

<span class="mw-page-title-main">Tau Boötis b</span> Hot Jupiter orbiting Tau Boötis A

Tau Boötis b, or more precisely Tau Boötis Ab, is an extrasolar planet approximately 51 light-years away. The planet and its host star is one of the planetary systems selected by the International Astronomical Union as part of NameExoWorlds, their public process for giving proper names to exoplanets and their host star. The process involved public nomination and voting for the new names, and the IAU planned to announce the new names in mid-December 2015. However, the IAU annulled the vote as the winning name was judged not to conform with the IAU rules for naming exoplanets.

<span class="mw-page-title-main">HD 149026 b</span> Extrasolar planet in the constellation Hercules

HD 149026 b, formally named Smertrios, is an extrasolar planet and hot Jupiter approximately 250 light-years from the Sun in the constellation of Hercules.

<span class="mw-page-title-main">55 Cancri b</span> Extrasolar planet in the constellation Cancer

55 Cancri b, occasionally designated 55 Cancri Ab, also named Galileo, is an exoplanet orbiting the Sun-like star 55 Cancri A every 14.65 days. It is the second planet in order of distance from its star, and is an example of a hot Jupiter, or possibly rather "warm Jupiter".

<span class="mw-page-title-main">55 Cancri d</span> Extrasolar planet in the constellation Cancer

55 Cancri d, formally named Lipperhey, is an extrasolar planet in a long-period orbit around the Sun-like star 55 Cancri A. Located at a similar distance from its star as Jupiter is from the Sun, it is the fifth and outermost known planet in its planetary system. 55 Cancri d was discovered on June 13, 2002.

<span class="mw-page-title-main">Gliese 876 c</span> Gas giant orbiting Gliese 876

Gliese 876 c is an exoplanet orbiting the red dwarf Gliese 876, taking about 30 days to complete an orbit. The planet was discovered in April 2001 and is the second planet in order of increasing distance from its star.

<span class="mw-page-title-main">Gliese 876 b</span> Extrasolar planet orbiting Gliese 876

Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.

<span class="mw-page-title-main">Upsilon Andromedae b</span> Extrasolar planet in the Andromeda constellation

Upsilon Andromedae b, formally named Saffar, is an extrasolar planet approximately 44 light-years away from the Sun in the constellation of Andromeda. The planet orbits its host star, the F-type main-sequence star Upsilon Andromedae A, approximately every five days. Discovered in June 1996 by Geoffrey Marcy and R. Paul Butler, it was one of the first hot Jupiters to be discovered. It is also one of the first non-resolved planets to be detected directly. Upsilon Andromedae b is the innermost-known planet in its planetary system.

<span class="mw-page-title-main">47 Ursae Majoris b</span> Gas giant orbiting the star 47 Ursae Majoris

47 Ursae Majoris b, formally named Taphao Thong, is a gas planet and an extrasolar planet approximately 46 light-years from Earth in the constellation of Ursa Major. The planet was discovered located in a long-period orbit around the star 47 Ursae Majoris in January 1996 and as of 2011 it is the innermost of three known planets in its planetary system. It has a mass at least 2.53 times that of Jupiter.

Mu Arae c, also known as HD 160691 c, formally named Dulcinea, is an extrasolar planet orbiting the star Mu Arae of the constellation Ara. It was the first 'hot Neptune' to be discovered.

<span class="mw-page-title-main">TrES-2b</span> Exoplanet in the constellation Draco, known for Darkest Exoplanet

TrES-2b (Kepler-1b) is an extrasolar planet orbiting the star GSC 03549-02811 located 750 light years away from the Solar System. The planet was identified in 2011 as the darkest known exoplanet, reflecting less than 1% of any light that hits it. Reflecting less light than charcoal, on the surface the planet is said to be pitch black. The planet's mass and radius indicate that it is a gas giant with a bulk composition similar to that of Jupiter. Unlike Jupiter, but similar to many planets detected around other stars, TrES-2b is located very close to its star and belongs to the class of planets known as hot Jupiters. This system was within the field of view of the Kepler spacecraft.

<span class="mw-page-title-main">Extraterrestrial atmosphere</span> Area of astronomical research

The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the giant planets, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

<span class="mw-page-title-main">HD 189733 b</span> Hot Jupiter exoplanet in the constellation Vulpecula

HD 189733 b is an exoplanet in the constellation of Vulpecula approximately 64.5 light-years away from the Solar System. Astronomers in France discovered the planet orbiting the star HD 189733 on October 5, 2005, by observing its transit across the star's face. With a mass 11.2% higher than that of Jupiter and a radius 11.4% greater, HD 189733 b orbits its host star once every 2.2 days at an orbital speed of 152.0 kilometers per second, making it a hot Jupiter with poor prospects for extraterrestrial life.

HD 73256 is a variable star in the southern constellation of Pyxis. It has the variable star designation CS Pyxidis. With a baseline apparent visual magnitude of 8.08, it requires binoculars or a small telescope to view. The star is located at a distance of 120 light years from the Sun based on parallax, and is drifting further away with a radial velocity of +30 km/s.

<span class="mw-page-title-main">HD 179949 b</span> Extrasolar planet that orbits the star HD 179949

HD 179949 b, formally named Mastika, is an extrasolar planet discovered by the Anglo-Australian Planet Search at the Anglo-Australian Observatory, which orbits the star HD 179949. The planet is a so-called "hot Jupiter", a Jupiter-mass planet orbiting very close to its parent star. In this case, orbital distance is almost one-tenth that of Mercury from the Sun. One orbital revolution lasts only about 3 days.

<span class="mw-page-title-main">51 Pegasi b</span> The first exoplanet to be discovered around a main-sequence star

51 Pegasi b, officially named Dimidium, is an extrasolar planet approximately 50 light-years away in the constellation of Pegasus. It was the first exoplanet to be discovered orbiting a main-sequence star, the Sun-like 51 Pegasi, and marked a breakthrough in astronomical research. It is the prototype for a class of planets called hot Jupiters.

<span class="mw-page-title-main">CoRoT-9b</span> Extrasolar planet in the constellation Serpens

CoRoT-9b is an exoplanet orbiting the star CoRoT-9, approximately 1500 light years away in the constellation Serpens. CoRoT-9b's distance of nearest approach to its parent star of approximately 0.36 AU was the largest of all known transiting planets at the time of its discovery, with an orbital period of 95 days. The transit of this planet lasts 8 hours. The planet is at a distance from its star where there is a strong increase in albedo as the temperature decreases, because of the condensation of reflective water clouds in the atmosphere. This suggests its atmosphere may be locked into one of two states: a cloudless state with temperatures between 380 K and 430 K, or covered in water clouds with a temperature in the range 250 K to 290 K.

References

  1. Sudarsky, D.; Burrows, A.; Pinto, P. (2000). "Albedo and Reflection Spectra of Extrasolar Giant Planets". The Astrophysical Journal . 538 (2): 885–903. arXiv: astro-ph/9910504 . Bibcode:2000ApJ...538..885S. CiteSeerX   10.1.1.316.9833 . doi:10.1086/309160.
  2. 1 2 3 4 5 6 7 8 Sudarsky, D.; Burrows, A.; Hubeny, I. (2003). "Theoretical Spectra and Atmospheres of Extrasolar Giant Planets". The Astrophysical Journal . 588 (2): 1121–1148. arXiv: astro-ph/0210216 . Bibcode:2003ApJ...588.1121S. doi:10.1086/374331.
  3. "First Map of Alien World". Archived from the original on October 16, 2007. Retrieved November 23, 2007.
  4. Berdyugina, Svetlana V.; Andrei V. Berdyugin; Dominique M. Fluri; Vilppu Piirola (20 January 2008). "First detection of polarized scattered light from an exoplanetary atmosphere" (PDF). The Astrophysical Journal. 673 (1): L83. arXiv: 0712.0193 . Bibcode:2008ApJ...673L..83B. doi:10.1086/527320. Archived from the original (PDF) on 17 December 2008.
  5. Jupiter Fact Sheet
  6. Saturn Fact Sheet
  7. Ivan Hubeny; Adam Burrows (2008). "Spectrum and atmosphere models of irradiated transiting extrasolar giant planets". Proceedings of the International Astronomical Union. 4: 239. arXiv: 0807.3588 . Bibcode:2009IAUS..253..239H. doi:10.1017/S1743921308026458.
  8. Ian Dobbs-Dixon (2008). "Radiative Hydrodynamical Studies of Irradiated Atmospheres". Proceedings of the International Astronomical Union. 4: 273. arXiv: 0807.4541 . Bibcode:2009IAUS..253..273D. doi:10.1017/S1743921308026495.
  9. Leigh C.; Collier C. A.; Horne K.; Penny A.; James D. (2003). "A new upper limit on the reflected starlight from Tau Bootis b.". MNRAS. 344 (4): 1271. arXiv: astro-ph/0308413 . Bibcode:2003MNRAS.344.1271L. doi:10.1046/j.1365-8711.2003.06901.x.