Acetobacterium

Last updated

Acetobacterium
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Acetobacterium

Balch et al. [1]
Type species
Acetobacterium woodii
Balch et al. 1977
Species
  • A. bakii
  • A. carbinolicum
  • "A. dehalogenans"
  • A. fimetarium
  • A. malicum
  • A. paludosum
  • "A. psammolithicum"
  • "A. submarinus"
  • A. tundrae
  • A. wieringae
  • A. woodii

Acetobacterium is a genus of anaerobic, Gram-positive bacteria that belong to the Eubacteriaceae family. The type species of this genus is Acetobacterium woodii. [1] The name, Acetobacterium, has originated because they are acetogens, predominantly making acetic acid as a byproduct of anaerobic metabolism. Most of the species reported in this genus are homoacetogens, i.e. solely producing acetic acid as their metabolic byproduct. They should not be confused with acetic acid bacteria which are aerobic, Gram-negative Alphaproteobacteria.

Contents

Other acetogens use the Wood–Ljungdahl pathway to reduce CO or CO2 and produce acetate, but what distinguishes A.woodii and other Acetobacterium from other acetogens is that it conserves energy by using an Rnf complex to create a sodium gradient rather than a proton gradient. This means that A.woodii would need sodium in its environment in order to make ATP. [2]

When reducing CO2 to acetate the Acetobacterium uses the Wood–Ljungdahl pathway with CO2 as the electron acceptor. However, the Acetobacterium can use other electron acceptors like caffeate. [3] To use caffeate as an electron acceptor the bacterium couples hydrogen dependent caffeate reduction with electrons from hydrogen and uses sodium ions as coupling ions. The step in the electron transport chain that creates the sodium gradient is the ferredoxin-dependent reduction of NAD+. [4]

One application of Acetobacterium, is that A. woodii could be used in the transformation of tetrachloromethane to dichloromethane and carbon dioxide by reductive dechlorinations, but the reactions taken to get to the final product are unknown. [5] This reaction is useful because the products, CO2 and dichloromethane are less toxic than tetrachloromethane. Another application of A.woodii is that it can reduce the effects of greenhouse gases since A.woodii can be used to convert CO2 and CO into acetyl-CoA which could then be used to make other chemicals like ethanol and acetate. [6] The production of ethanol by Acetobacterium using chemolithotrophic methods is important because ethanol can be used as a biofuel. [2] By using the ethanol that is produced by the bacterium researchers aim to create a sustainable way to create energy. [6]

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [7] and National Center for Biotechnology Information (NCBI) [8]

16S rRNA based LTP_10_2024 [9] [10] [11] 120 marker proteins based GTDB 09-RS220 [12] [13] [14]
Acetobacterium

A. bakiiKotsyurbenko et al. 1997

A. paludosumKotsyurbenko et al. 1997

A. tundraeSimankova et al. 2001

A. carbinolicum Eichler & Schink 1985

A. woodiiBalch et al. 1977

A. wieringaeBraun & Gottschalk 1983

A. fimetariumKotsyurbenko et al. 1997

A. malicumTanaka & Pfennig 1990

Acetobacterium

A. bakii

A. woodii

"A. dehalogenans" Kaufmann, Wohlfarth &
Diekert 1998
[Acetobacterium malicum]

A. wieringae

A. fimetarium

A. paludosum

A. tundrae

See also

References

  1. 1 2 Balch, W. E.; Schoberth, S.; Tanner, R. S.; Wolfe, R. S. (1977). "Acetobacterium, a New Genus of Hydrogen-Oxidizing, Carbon Dioxide-Reducing, Anaerobic Bacteria". International Journal of Systematic Bacteriology. 27 (4): 355. doi: 10.1099/00207713-27-4-355 .
  2. 1 2 Schiel-Bengelsdorf, Bettina; Dürre, Peter (2012-07-16). "Pathway engineering and synthetic biology using acetogens". FEBS Letters. 586 (15): 2191–2198. doi: 10.1016/j.febslet.2012.04.043 . ISSN   1873-3468. PMID   22710156.
  3. Müller, Volker; Imkamp, Frank; Biegel, Eva; Schmidt, Silke; Dilling, Sabrina (2008-03-01). "Discovery of a Ferredoxin:NAD+-Oxidoreductase (Rnf) in Acetobacterium woodii". Annals of the New York Academy of Sciences. 1125 (1): 137–146. doi:10.1196/annals.1419.011. ISSN   1749-6632.
  4. Imkamp, Frank; Biegel, Eva; Jayamani, Elamparithi; Buckel, Wolfgang; Müller, Volker (2007-11-15). "Dissection of the Caffeate Respiratory Chain in the Acetogen Acetobacterium woodii: Identification of an Rnf-Type NADH Dehydrogenase as a Potential Coupling Site". Journal of Bacteriology. 189 (22): 8145–8153. doi:10.1128/jb.01017-07. ISSN   0021-9193. PMC   2168664 . PMID   17873051.
  5. Egli, C; Tschan, T; Scholtz, R; Cook, A M; Leisinger, T (November 1988). "Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii". Applied and Environmental Microbiology. 54 (11): 2819–2824. ISSN   0099-2240. PMC   204379 . PMID   3145712.
  6. 1 2 Bertsch, Johannes; Müller, Volker (2015-09-01). "CO Metabolism in the Acetogen Acetobacterium woodii". Applied and Environmental Microbiology. 81 (17): 5949–5956. doi:10.1128/aem.01772-15. ISSN   0099-2240. PMC   4551271 . PMID   26092462.
  7. J.P. Euzéby. "Acetobacterium". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-09-09.
  8. Sayers; et al. "Acetobacterium". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-09-09.
  9. "The LTP" . Retrieved 10 December 2024.
  10. "LTP_all tree in newick format" . Retrieved 10 December 2024.
  11. "LTP_10_2024 Release Notes" (PDF). Retrieved 10 December 2024.
  12. "GTDB release 09-RS220". Genome Taxonomy Database . Retrieved 10 May 2024.
  13. "bac120_r220.sp_labels". Genome Taxonomy Database . Retrieved 10 May 2024.
  14. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2024.