Brocadia | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | "Ca. Brocadiae" Jenkins and Staley 2013 [1] |
Order: | "Ca. Brocadiales" Jetten et al. 2010 [2] |
Family: | "Ca. Brocadiaceae" Jetten et al. 2015 [3] |
Genus: | "Ca. Brocadia" Jetten et al. 2001 [4] |
Type species | |
"Ca. Brocadia anammoxidans" Jetten et al. 2001 | |
Species [5] | |
|
"Candidatus Brocadia" is a candidatus genus of bacteria, meaning that while it is well-characterized, it has not been grown as a pure culture yet. [6] [7] Due to this, much of what is known about Candidatus species (including Brocadia) has been discovered using culture-independent techniques such as metagenomic sequence analysis. [6]
Some notable species within this genus include the type species, Candidatus Brocadia anammoxidans, along with Candidatus Brocadia sinica and Candidatus Brocadia fulgida. Many of the species in this genus, including those already listed, are capable of anaerobic ammonium oxidation, also known as anammox, an important part of the global nitrogen cycle. [8] [9] Anammox works by converting fixed nitrogen back into N2 gas in the atmosphere. [9] Anammox bacteria have a unique, membrane-bound organelle where this anammox process takes place—it is called the anammoxosome. [7]
Phylogeny based on GTDB 08-RS214 by Genome Taxonomy Database [10] [11] [12]
| |||||||||||||||||||||||||
Candidatus Brocadia falls under the phylum of Planctomycetota. [13] These bacteria are known for a few distinguishing phenotypic features including cell surface pits (crateriform structures), no present peptidoglycan in the cell wall, compartmentalization, and even budding reproduction rather than binary fission. [13]
Compartmentalization of Ca. Brocadia and anammox bacteria in general are of great interest. They are known to have three main compartments: (1) the paryphoplasm, (2) the riboplasm, and (3) the anammoxosome, as seen in Figure 1. [7]
The paryphoplasm is the outermost compartment of the cell, while the inner most compartment is the riboplasm, which holds the ribosomes and DNA of the cell. [7] The anammoxosome is a membrane-bound component of the cell that does not contain DNA or ribosomes, and it is where the anammox process takes place. [7] This is something that makes anammox bacteria unique, as prokaryotes typically do not have membrane-bound organelles.
Ca. Brocadia, like other anammox bacteria, have integral ladderane lipids embedded in the membranes of their anammoxosome. [14] This helps keep any toxic intermediates from the anammox process—such as hydrazine—from contaminating and damaging the rest of the cell. [14]
These bacteria are found in many natural environments that the anammox process takes place in, and are a major part of the conversion of fixed nitrogen to gaseous nitrogen (N2) that is released into the atmosphere. [14] Anammox bacteria like those falling within Ca. Brocadia were first found in the Black Sea, and subsequently the Arabian Sea, both bodies of water being mostly anoxic and ideal conditions for the anammox process. [14]
The genus, Ca. Brocadia and others are used in industrial waste water treatment plants using sequencing batch reactors, rotating biological contactors, membrane bioreactors, and many others. [15] These reactors are ideal for industrial waste water treatment due to their high sludge retention. [15]
Many studies have been performed regarding the physiological attributes of the different anammox bacteria, including their role in the anammox process, how they perform in the anammox process, and other key features that differentiate them from each other. Comparisons between important and notable species are listed here.
Ca. B. anammoxidans is the type species for the genera of Ca. Brocadia, and the first known anammox bacteria. [13] Its name was chosen based on where the bacteria was discovered: 'Brocadia' for the pilot plant it was found in at Gist-brocades, and 'anammoxidans' due to its ability to perform anammox. [13] This was determined after its 16S ribosomal DNA was extracted, amplified, and sequenced, and it was seen to fall within the phylum of Planctomycetota. [13]
Ca. B. sinica was directly compared against its type species in both natural and man-made environments where anammox was performed. Ca. B. sinica was found to have slightly higher growth temperatures, while Ca. B. anammoxidans had slightly lower temperatures, but a wider range. [16] Growth pHs remained similar, with Ca. B. sinica having slightly higher pH requirements. [16] Ca. B. sinica was also shown to have higher resistance to dissolved oxygen in growth media, comparatively. [16] Ca. B. sinica outcompetes Ca. B. anammoxidans in man-made environments with high ammonium and nitrite, but it would be outcompeted in natural environments due to limited ammonium and nitrite availability. [16]
Ca. B. fulgida has been found to autofluoresce in the right concentrations and aggregations, but not as a single cell. [14] More specifically, an autofluorescent substance has been found surrounding its cells, but has not yet been further identified. Two excitation and emission values were found associated with this autofluorescence, which could suggest more than one compound contributes to this unique trait. [14]
This species is noted to have higher formate and acetate oxidation rates than its type species Ca. B. anammoxidans. [14] It's proposed that Ca. B. fulgida converts acetate to CO2 first, and then incorporates the CO2 into acetyl-CoA. This is unique because it is much more difficult than the pathway that converts acetate to acetyl-CoA. [14]
In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive. Organelles are either separately enclosed within their own lipid bilayers or are spatially distinct functional units without a surrounding lipid bilayer. Although most organelles are functional units within cells, some function units that extend outside of cells are often termed organelles, such as cilia, the flagellum and archaellum, and the trichocyst.
The Planctomycetota are a phylum of widely distributed bacteria, occurring in both aquatic and terrestrial habitats. They play a considerable role in global carbon and nitrogen cycles, with many species of this phylum capable of anaerobic ammonium oxidation, also known as anammox. Many Planctomycetota occur in relatively high abundance as biofilms, often associating with other organisms such as macroalgae and marine sponges.
Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water.
"Candidatus Brocadia anammoxidans" is a bacterial member of the phylum Planctomycetota and therefore lacks peptidoglycan in its cell wall, and has a compartmentalized cytoplasm.
Denitrifying bacteria are a diverse group of bacteria that encompass many different phyla. This group of bacteria, together with denitrifying fungi and archaea, is capable of performing denitrification as part of the nitrogen cycle. Denitrification is performed by a variety of denitrifying bacteria that are widely distributed in soils and sediments and that use oxidized nitrogen compounds such as nitrate and nitrite in the absence of oxygen as a terminal electron acceptor. They metabolize nitrogenous compounds using various enzymes, including nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide reductase (NOR) and nitrous oxide reductase (NOS), turning nitrogen oxides back to nitrogen gas or nitrous oxide.
Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.
A lithoautotroph is an organism which derives energy from reactions of reduced compounds of mineral (inorganic) origin. Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. Chemolithoautotrophs are exclusively microbes. Photolithoautotrophs include macroflora such as plants; these do not possess the ability to use mineral sources of reduced compounds for energy. Most chemolithoautotrophs belong to the domain Bacteria, while some belong to the domain Archaea. Lithoautotrophic bacteria can only use inorganic molecules as substrates in their energy-releasing reactions. The term "lithotroph" is from Greek lithos (λίθος) meaning "rock" and trōphos (τροφοσ) meaning "consumer"; literally, it may be read "eaters of rock". The "lithotroph" part of the name refers to the fact that these organisms use inorganic elements/compounds as their electron source, while the "autotroph" part of the name refers to their carbon source being CO2. Many lithoautotrophs are extremophiles, but this is not universally so, and some can be found to be the cause of acid mine drainage.
Nitrifying bacteria are chemolithotrophic organisms that include species of genera such as Nitrosomonas, Nitrosococcus, Nitrobacter, Nitrospina, Nitrospira and Nitrococcus. These bacteria get their energy from the oxidation of inorganic nitrogen compounds. Types include ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Many species of nitrifying bacteria have complex internal membrane systems that are the location for key enzymes in nitrification: ammonia monooxygenase, hydroxylamine oxidoreductase, and nitrite oxidoreductase.
In chemistry, a ladderane is an organic molecule containing two or more fused cyclobutane rings. The name arises from the resemblance of a series of fused cyclobutane rings to a ladder. Numerous synthetic approaches have been developed for the synthesis of ladderane compounds of various lengths. The mechanisms often involve [2 + 2] photocycloadditions, a useful reaction for creating strained 4-membered rings. Naturally occurring ladderanes have been identified as major components of the anammoxosome membrane of the anammox bacteria, phylum Planctomycetota.
Johannes Gijsbrecht Kuenen is a Dutch microbiologist who is professor emeritus at the Delft University of Technology and a visiting scientist at the University of Southern California. His research is influenced by, and a contribution to, the scientific tradition of the Delft School of Microbiology.
"CandidatusScalindua brodae" is a bacterial member of the order Planctomycetales and therefore lacks peptidoglycan in its cell wall, has a compartmentalized cytoplasm. It is an ammonium oxidising bacteria.
CandidatusScalindua wagneri is a Gram-negative coccoid-shaped bacterium that was first isolated from a wastewater treatment plant. This bacterium is an obligate anaerobic chemolithotroph that undergoes anaerobic ammonium oxidation (anammox). It can be used in the wastewater treatment industry in nitrogen reactors to remove nitrogenous wastes from wastewater without contributing to fixed nitrogen loss and greenhouse gas emission.
"Candidatus Scalindua" is a bacterial genus, and a proposed member of the order Planctomycetales. These bacteria lack peptidoglycan in their cell wall and have a compartmentalized cytoplasm. They are ammonium oxidizing bacteria found in marine environments.
Hydrazine oxidoreductase (EC 1.7.99.8, HAO (ambiguous)) is an enzyme with systematic name hydrazine:acceptor oxidoreductase. This enzyme catalyses the following chemical reaction
Candidatus Brocadia fulgida is a prokaryotic species of bacteria that performs the anammox process. Fatty acids constitute an enrichment culture for B. fulgida. The species' 16S ribosomal RNA sequence has been determined. During the anammox process, it oxidizes acetate at the highest rate and outcompetes other anammox bacteria, which indicates that it does not incorporate acetate directly into its biomass like other anammox bacteria.
Dissimilatory nitrate reduction to ammonium (DNRA), also known as nitrate/nitrite ammonification, is the result of anaerobic respiration by chemoorganoheterotrophic microbes using nitrate (NO3−) as an electron acceptor for respiration. In anaerobic conditions microbes which undertake DNRA oxidise organic matter and use nitrate (rather than oxygen) as an electron acceptor, reducing it to nitrite, and then to ammonium (NO3− → NO2− → NH4+).
NC10 is a bacterial phylum with candidate status, meaning its members remain uncultured to date. The difficulty in producing lab cultures may be linked to low growth rates and other limiting growth factors.
CandidatusAnammoxoglobus propionicus is an anammox bacteria that is taxonomically in the phylum of Planctomycetota. Anammoxoglobus propionicus is an interest to many researchers due to its ability to reduce nitrite and oxidize ammonium into nitrogen gas and water.
Candidatus "Methylomirabilis oxyfera" is a candidate species of Gram-negative bacteria belonging to the NC10 phylum, characterized for its capacity to couple anaerobic methane oxidation with nitrite reduction in anoxic environments. To acquire oxygen for methane oxidation, M. oxyfera utilizes an intra-aerobic pathway through the reduction of nitrite (NO2) to dinitrogen (N2) and oxygen.
Anammox is a wastewater treatment technique that removes nitrogen using anaerobic ammonium oxidation (anammox). This process is performed by anammox bacteria which are autotrophic, meaning they do not need organic carbon for their metabolism to function. Instead, the metabolism of anammox bacteria convert ammonium and nitrite into dinitrogen gas. Anammox bacteria are a wastewater treatment technique and wastewater treatment facilities are in the process of implementing anammox-based technologies to further enhance ammonia and nitrogen removal.
{{cite book}}
: |work=
ignored (help)