This article needs additional citations for verification .(August 2019) |
A common year starting on Friday is any non-leap year (i.e. a year with 365 days) that begins on Friday, 1 January, and ends on Friday, 31 December. Its dominical letter hence is C. The most recent year of such kind was 2021 and the next one will be 2027 in the Gregorian calendar, [1] or, likewise, 2022 and 2033 in the obsolete Julian calendar, see below for more. This common year is one of the three possible common years in which a century year can end on, and occurs in century years that yield a remainder of 100 when divided by 400. The most recent such year was 1700 and the next one will be 2100.
Any common year that starts on Wednesday, Friday or Saturday has only one Friday the 13th: the only one in this common year occurs in August. Leap years starting on Thursday share this characteristic, but also have another one in February.
From July of the year that precedes this type of year until September in this type of year is the longest period (14 months) that occurs without a Friday the 17th. Leap years starting on Tuesday share this characteristic, from August of the common year that precedes it to October in that type of year, (e.g. 2007-08 and 2035-36). This type of year also has the longest period (also 14 months) without a Tuesday the 13th, from July of this year until September of the next common year (that being on Saturday), unless the next year is a leap year (which is also a Saturday), then the period is reduced to only 11 months (e.g. 1999-2000 and 2027-28).
This is the one of two types of years overall where a rectangular February is possible, in places where Monday is considered to be the first day of the week. Common years starting on Thursday share this characteristic, but only in places where Sunday is considered to be the first day of the week.
Additionally, this type of year has three months (February, March and November) beginning exactly on the first day of the week, in areas which Monday is considered the first day of the week. Leap years starting on Monday share this characteristic on the months of January, April and July.
Calendar for any common year starting on Friday, presented as common in many English-speaking areas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
ISO 8601-conformant calendar with week numbers for any common year starting on Friday (dominical letter C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
This is the only year type where the nth "Doomsday" (this year Sunday) is not in ISO week n; it is in ISO week n-1.
In the (currently used) Gregorian calendar, alongside Sunday, Monday, Wednesday or Saturday, the fourteen types of year (seven common, seven leap) repeat in a 400-year cycle (20871 weeks). Forty-three common years per cycle or exactly 10.75% start on a Friday. The 28-year sub-cycle only spans across century years divisible by 400, e.g. 1600, 2000, and 2400.
For this kind of year, the ISO week 10 (which begins March 8) and all subsequent ISO weeks occur later than in all other years, and exactly one week later than Leap years starting on Thursday. Also, the ISO weeks in January and February occur later than all other common years, but leap years starting on Friday share this characteristic in January and February, until ISO week 8.
Decade | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16th century | prior to first adoption (proleptic) | 1582 | 1593 | 1599 | |||||||||||
17th century | 1610 | — | 1621 | 1627 | 1638 | 1649 | 1655 | 1666 | 1677 | 1683 | 1694 | 1700 | |||
18th century | 1706 | 1717 | 1723 | 1734 | 1745 | 1751 | 1762 | 1773 | 1779 | 1790 | — | ||||
19th century | 1802 | 1813 | 1819 | 1830 | — | 1841 | 1847 | 1858 | 1869 | 1875 | 1886 | 1897 | |||
20th century | 1909 | 1915 | 1926 | 1937 | 1943 | 1954 | 1965 | 1971 | 1982 | 1993 | 1999 | ||||
21st century | 2010 | — | 2021 | 2027 | 2038 | 2049 | 2055 | 2066 | 2077 | 2083 | 2094 | 2100 | |||
22nd century | 2106 | 2117 | 2123 | 2134 | 2145 | 2151 | 2162 | 2173 | 2179 | 2190 | — | ||||
23rd century | 2202 | 2213 | 2219 | 2230 | — | 2241 | 2247 | 2258 | 2269 | 2275 | 2286 | 2297 | |||
24th century | 2309 | 2315 | 2326 | 2337 | 2343 | 2354 | 2365 | 2371 | 2382 | 2393 | 2399 |
0–99 | 10 | 21 | 27 | 38 | 49 | 55 | 66 | 77 | 83 | 94 | |
---|---|---|---|---|---|---|---|---|---|---|---|
100–199 | 100 | 106 | 117 | 123 | 134 | 145 | 151 | 162 | 173 | 179 | 190 |
200–299 | 202 | 213 | 219 | 230 | 241 | 247 | 258 | 269 | 275 | 286 | 297 |
300–399 | 309 | 315 | 326 | 337 | 343 | 354 | 365 | 371 | 382 | 393 | 399 |
In the now-obsolete Julian calendar, the fourteen types of year (seven common, seven leap) repeat in a 28-year cycle (1461 weeks). This sequence occurs exactly once within a cycle, and every common letter thrice.
As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1). Years 4, 15 and 26 of the cycle are common years beginning on Friday. 2017 is year 10 of the cycle. Approximately 10.71% of all years are common years beginning on Friday.
Decade | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15th century | 1406 | 1417 | 1423 | 1434 | 1445 | 1451 | 1462 | 1473 | 1479 | 1490 | — | |||||||||
16th century | 1501 | 1507 | 1518 | 1529 | 1535 | 1546 | 1557 | 1563 | 1574 | 1585 | 1591 | |||||||||
17th century | 1602 | 1613 | 1619 | 1630 | — | 1641 | 1647 | 1658 | 1669 | 1675 | 1686 | 1697 | ||||||||
18th century | 1703 | 1714 | 1725 | 1731 | 1742 | 1753 | 1759 | 1770 | — | 1781 | 1787 | 1798 | ||||||||
19th century | 1809 | 1815 | 1826 | 1837 | 1843 | 1854 | 1865 | 1871 | 1882 | 1893 | 1899 | |||||||||
20th century | 1910 | — | 1921 | 1927 | 1938 | 1949 | 1955 | 1966 | 1977 | 1983 | 1994 | |||||||||
21st century | 2005 | 2011 | 2022 | 2033 | 2039 | 2050 | — | 2061 | 2067 | 2078 | 2089 | 2095 |
A week is a unit of time equal to seven days. It is the standard time period used for short cycles of days in most parts of the world. The days are often used to indicate common work days and rest days, as well as days of worship. Weeks are often mapped against yearly calendars.
A common year starting on Sunday is any non-leap year that begins on Sunday, 1 January, and ends on Sunday, 31 December. Its dominical letter hence is A. The most recent year of such kind was 2023 and the next one will be 2034 in the Gregorian calendar, or, likewise, 2018 and 2029 in the obsolete Julian calendar, see below for more.
A common year starting on Monday is any non-leap year that begins on Monday, 1 January, and ends on Monday, 31 December. Its dominical letter hence is G. The most recent year of such kind was 2018 and the next one will be 2029 in the Gregorian calendar, or likewise, 2019 and 2030 in the Julian calendar, see below for more. This common year is one of the three possible common years in which a century year can begin on and occurs in century years that yield a remainder of 300 when divided by 400. The most recent such year was 1900 and the next one will be 2300.
Dominical letters or Sunday letters are a method used to determine the day of the week for particular dates. When using this method, each year is assigned a letter depending on which day of the week the year starts. The Dominical letter for the current year 2024 is GF.
A leap year starting on Sunday is any year with 366 days that begins on Sunday, 1 January, and ends on Monday, 31 December. Its dominical letters hence are AG. The most recent year of such kind was 2012 and the next one will be 2040 in the Gregorian calendar or, likewise 2024 and 2052 in the obsolete Julian calendar.
A common year starting on Tuesday is any non-leap year that begins on Tuesday, 1 January, and ends on Tuesday, 31 December. Its dominical letter hence is F. The most recent year of such kind was 2019 and the next one will be 2030, or, likewise, 2014 and 2025 in the obsolete Julian calendar, see below for more.
A leap year starting on Monday is any year with 366 days that begins on Monday, 1 January, and ends on Tuesday, 31 December. Its dominical letters hence are GF. The current year, 2024, is a leap year starting on Monday in the Gregorian calendar. The last such year was 1996 and the next such year will be 2052 in the Gregorian calendar or, likewise, 2008 and 2036 in the obsolete Julian calendar.
A common year starting on Wednesday is any non-leap year that begins on Wednesday, 1 January, and ends on Wednesday, 31 December. Its dominical letter hence is E. The most recent year of such kind was 2014 and the next one will be 2025 in the Gregorian calendar or, likewise, 2015 and 2026 in the obsolete Julian calendar, see below for more. This common year is one of the three possible common years in which a century year can begin on, and occurs in century years that yield a remainder of 200 when divided by 400. The most recent such year was 1800 and the next one will be 2200.
A leap year starting on Tuesday is any year with 366 days that begins on Tuesday, 1 January, and ends on Wednesday, 31 December. Its dominical letters hence are FE. The most recent year of such kind was 2008 and the next one will be 2036 in the Gregorian calendar or, likewise 2020 and 2048 in the obsolete Julian calendar.
A common year starting on Saturday is any non-leap year that begins on Saturday, 1 January, and ends on Saturday, 31 December. Its dominical letter hence is B. The most recent year of such kind was 2022 and the next one will be 2033 in the Gregorian calendar or, likewise, 2023 and 2034 in the obsolete Julian calendar. See below for more.
A common year starting on Thursday is any non-leap year that begins on Thursday, 1 January, and ends on Thursday, 31 December. Its dominical letter hence is D. The most recent year of such kind was 2015 and the next one will be 2026 in the Gregorian calendar or, likewise, 2021 and 2027 in the obsolete Julian calendar, see below for more.
A leap year starting on Saturday is any year with 366 days that begins on Saturday, 1 January, and ends on Sunday, 31 December. Its dominical letters hence are BA. The most recent year of such kind was 2000 and the next one will be 2028 in the Gregorian calendar or, likewise 2012 and 2040 in the obsolescent Julian calendar. In the Gregorian calendar, years divisible by 400 are always leap years starting on Saturday. The most recent such occurrence was 2000 and the next one will be 2400, see below for more.
A leap year starting on Friday is any year with 366 days that begins on Friday 1 January and ends on Saturday 31 December. Its dominical letters hence are CB. The most recent year of such kind was 2016 and the next one will be 2044 in the Gregorian calendar or, likewise, 2000 and 2028 in the obsolete Julian calendar.
A leap year starting on Thursday is any year with 366 days that begins on Thursday 1 January, and ends on Friday 31 December. Its dominical letters hence are DC. The most recent year of such kind was 2004 and the next one will be 2032 in the Gregorian calendar or, likewise, 2016 and 2044 in the obsolete Julian calendar.
A leap year starting on Wednesday is any year with 366 days that begins on Wednesday 1 January and ends on Thursday 31 December. Its dominical letters hence are ED. The most recent year of such kind was 2020 and the next one will be 2048 in the Gregorian calendar, or likewise, 2004 and 2032 in the obsolete Julian calendar, see below for more.
The Doomsday rule, Doomsday algorithm or Doomsday method is an algorithm of determination of the day of the week for a given date. It provides a perpetual calendar because the Gregorian calendar moves in cycles of 400 years. The algorithm for mental calculation was devised by John Conway in 1973, drawing inspiration from Lewis Carroll's perpetual calendar algorithm. It takes advantage of each year having a certain day of the week upon which certain easy-to-remember dates, called the doomsdays, fall; for example, the last day of February, April 4 (4/4), June 6 (6/6), August 8 (8/8), October 10 (10/10), and December 12 (12/12) all occur on the same day of the week in any year.
The ISO week date system is effectively a leap week calendar system that is part of the ISO 8601 date and time standard issued by the International Organization for Standardization (ISO) since 1988 and, before that, it was defined in ISO (R) 2015 since 1971. It is used (mainly) in government and business for fiscal years, as well as in timekeeping. This was previously known as "Industrial date coding". The system specifies a week year atop the Gregorian calendar by defining a notation for ordinal weeks of the year.
The Zimmer tower is a tower in Lier, Belgium, also known as the Cornelius tower, that was originally a keep of Lier's 14th-century city fortifications. In 1930, astronomer and clockmaker Louis Zimmer (1888–1970) built the Jubilee Clock, which is displayed on the front of the tower, and consists of 12 clocks encircling a central one with 57 dials. These clocks showed time on all continents, phases of the moons, times of tides and many other periodic phenomena.
The Hanke–Henry Permanent Calendar (HHPC) is a proposal for calendar reform. It is one of many examples of leap week calendars, calendars that maintain synchronization with the solar year by intercalating entire weeks rather than single days. It is a modification of a previous proposal, Common-Civil-Calendar-and-Time (CCC&T). With the Hanke–Henry Permanent Calendar, every calendar date always falls on the same day of the week. A major feature of the calendar system is the abolition of time zones.