Common year starting on Wednesday

Last updated

A common year starting on Wednesday is any non-leap year (i.e. a year with 365 days) that begins on Wednesday, 1 January, and ends on Wednesday, 31 December. Its dominical letter hence is E. The most recent year of such kind was 2014, and the next one will be 2025 in the in the Gregorian calendar [1] or, likewise, 2009, 2015, and 2026 in the obsolete Julian calendar. The century year, 1800, was also a common year starting on Wednesday in the Gregorian calendar, see below for more. Any common year that starts on Wednesday, Friday or Saturday has only one Friday the 13th; The only Friday the 13th in this common year occurs in June. Leap years starting on Tuesday share this characteristic.

A leap year is a calendar year containing one additional day added to keep the calendar year synchronized with the astronomical or seasonal year. Because seasons and astronomical events do not repeat in a whole number of days, calendars that have the same number of days in each year drift over time with respect to the event that the year is supposed to track. By inserting an additional day or month into the year, the drift can be corrected. A year that is not a leap year is called a common year.

Wednesday is the day of the week between Tuesday and Thursday. According to international standard ISO 8601 it is the third day of the week. In countries that use the Sunday-first convention and in the Jewish Hebrew calendar Wednesday is defined as the fourth day of the week. The name is derived from Old English Wōdnesdæg and Middle English Wednesdei, "day of Woden", reflecting the pre-Christian religion practiced by the Anglo-Saxons, a variation of the Norse god Odin. In other languages, such as the French mercredi or Italian mercoledì, the day's name is a calque of dies Mercurii "day of Mercury". It has the most letters out of all the Gregorian calendar days.

Dominical letters or Sunday letters are a method used to determine the day of the week for particular dates. When using this method, each year is assigned a letter depending on which day of the week the year starts on.

Contents

Calendars

Calendar for any common year starting on Wednesday,
presented as common in many English-speaking areas

A common year is a calendar year with 365 days, as distinguished from a leap year, which has 366. More generally, a common year is one without intercalation. The Gregorian calendar,, employs both common years and leap years to keep the calendar aligned with the tropical year, which does not contain an exact number of days.

01020304
05060708091011
12131415161718
19202122232425
262728293031 
 
01
02030405060708
09101112131415
16171819202122
232425262728
 
01
02030405060708
09101112131415
16171819202122
23242526272829
3031 
0102030405
06070809101112
13141516171819
20212223242526
27282930 
 
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
01020304050607
08091011121314
15161718192021
22232425262728
2930 
 
0102030405
06070809101112
13141516171819
20212223242526
2728293031 
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
31 
010203040506
07080910111213
14151617181920
21222324252627
282930 
 
01020304
05060708091011
12131415161718
19202122232425
262728293031 
 
01
02030405060708
09101112131415
16171819202122
23242526272829
30 
010203040506
07080910111213
14151617181920
21222324252627
28293031 
 

ISO 8601-conformant calendar with week numbers for
any common year starting on Wednesday (dominical letter E)

ISO 8601Data elements and interchange formats – Information interchange – Representation of dates and times is an international standard covering the exchange of date- and time-related data. It was issued by the International Organization for Standardization (ISO) and was first published in 1988. The purpose of this standard is to provide an unambiguous and well-defined method of representing dates and times, so as to avoid misinterpretation of numeric representations of dates and times, particularly when data are transferred between countries with different conventions for writing numeric dates and times.

The ISO week date system is effectively a leap week calendar system that is part of the ISO 8601 date and time standard issued by the International Organization for Standardization (ISO) since 1988 and, before that, it was defined in ISO (R) 2015 since 1971. It is used (mainly) in government and business for fiscal years, as well as in timekeeping. This was previously known as "Industrial date coding". The system specifies a week year atop the Gregorian calendar by defining a notation for ordinal weeks of the year.

0102030405
06070809101112
13141516171819
20212223242526
2728293031 
 
010203040506
07080910111213
14151617181920
21222324252627
282930 
 
010203040506
07080910111213
14151617181920
21222324252627
28293031 
 
0102030405
06070809101112
13141516171819
20212223242526
2728293031 
 
0102
03040506070809
10111213141516
17181920212223
2425262728
 
01020304
05060708091011
12131415161718
19202122232425
262728293031 
 
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
31 
01
02030405060708
09101112131415
16171819202122
23242526272829
30 
01020304050607
08091011121314
15161718192021
22232425262728
2930 
 
01020304050607
08091011121314
15161718192021
22232425262728
293031 
 

If the preceding year is a common year starting on Tuesday, then the year begins in ISO week 52; if the preceding year is a leap year starting on Monday, then the year begins in ISO week 53.

A common year starting on Tuesday is any non-leap year that begins on Tuesday, 1 January, and ends on Tuesday, 31 December. Its dominical letter hence is F. The current year, 2019, is a common year starting on Tuesday in the Gregorian calendar. The last such year was 2013 and the next such year will be 2030, or, likewise, 2014 and 2025 in the obsolete Julian calendar, see below for more. Any common year that starts on Sunday, Monday or Tuesday has two Friday the 13ths. This common year contains two Friday the 13ths in September and December. Leap years starting on Monday share this characteristic. From July of the year that precedes this year until September in this type of year is the longest period that occurs without a Friday the 13th. Leap years starting on Saturday share this characteristic, from August of the common year that precedes it to October in that type of year.

A leap year starting on Monday is any year with 366 days that begins on Monday, 1 January, and ends on Tuesday, 31 December. Its dominical letters hence are GF, such as the years 1912, 1940, 1968, 1996, 2024, 2052, 2080, and 2120 in the Gregorian calendar or, likewise, 2008, 2036, and 2064 in the obsolete Julian calendar. Any leap year that starts on Monday, Wednesday or Thursday has two Friday the 13ths. This leap year contains two Friday the 13ths in September and December. Common years starting on Tuesday share this characteristic.

Applicable years

Gregorian Calendar

In the (currently used) Gregorian calendar, alongside with Sunday, the fourteen types of year (seven common, seven leap) repeat in a 400-year cycle (20871 weeks). Forty-three common years per cycle or exactly 10.75% start on a Wednesday. The 28-year sub-cycle does only span across century years divisible by 400, e.g. 1600, 2000, and 2400.

A common year starting on Sunday is any non-leap year that begins on Sunday, 1 January, and ends on Sunday, 31 December. Its dominical letter hence is A. The most recent year of such kind was 2017 and the next one will be 2023 in the Gregorian calendar, or, likewise, 2018 and 2029 in the obsolete Julian calendar, see below for more. Any common year that starts on Sunday, Monday or Tuesday has two Friday the 13ths. This common year contains two Friday the 13ths in January and October.

Gregorian common years starting on Wednesday [1]
Decade1st2nd3rd4th5th6th7th8th9th10th
16th century prior to first adoption (proleptic) 1586 1597
17th century 1603 1614 1625 1631 1642 1653 1659 1670 1681 1687 1698
18th century 1710 1721 1727 1738 1749 1755 1766 1777 1783 1794 1800
19th century 1806 1817 1823 1834 1845 1851 1862 1873 1879 1890
20th century 1902 1913 1919 1930 1941 1947 1958 1969 1975 1986 1997
21st century 2003 2014 2025 2031 2042 2053 2059 2070 2081 2087 2098

Julian Calendar

In the now-obsolete Julian calendar, the fourteen types of year (seven common, seven leap) repeat in a 28-year cycle (1461 weeks). A leap year has two adjoining dominical letters (one for January and February and the other for March to December, as 29 February has no letter). This sequence occurs exactly once within a cycle, and every common letter thrice.

The solar cycle is a 28-year cycle of the Julian calendar with respect to the week. It occurs because leap years occur every 4 years and there are 7 possible days to start a leap year, making a 28-year sequence.

As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1). Years 2, 8 and 19 of the cycle are common years beginning on Wednesday. 2017 is year 10 of the cycle. Approximately 10.71% of all years are common years beginning on Wednesday.

Julian common years starting on Wednesday
Decade1st2nd3rd4th5th6th7th8th9th10th
15th century 1410 1421 1427 1438 1449 1455 1466 1477 1483 1494
16th century 1505 1511 1522 1533 1539 1550 1561 1567 1578 15891595
17th century1606161716231634164516511662167316791690
18th century17011707171817291735174617571763177417851791
19th century18021813181918301841184718581869187518861897
20th century19031914192519311942195319591970198119871998
21st century20092015202620372043205420652071208220932099

Related Research Articles

A common year starting on Friday is any non-leap year that begins on Friday, 1 January, and ends on Friday, 31 December. Its dominical letter hence is C. The most recent year of such kind was 2010 and the next one will be 2021 in the Gregorian calendar, or, likewise, 2011 and 2022 in the obsolete Julian calendar. The century year, 2100, will also be a common year starting on Friday in the Gregorian calendar. See below for more. Any common year that starts on Wednesday, Friday or Saturday has only one Friday the 13th; The only Friday the 13th in this common year occurs in August. Leap years starting on Thursday share this characteristic, but also have another one in February.

A common year starting on Monday is any non-leap year that begins on Monday, 1 January, and ends on Monday, 31 December. Its dominical letter hence is G. The most recent year of such kind was 2018 and the next one will be 2029 in the Gregorian calendar, or likewise, 2013 and 2019 in the obsolete Julian calendar. The century year, 1900, was also a common year starting on Monday in the Gregorian calendar. See below for more. Any common year that starts on Sunday, Monday or Tuesday has two Friday the 13ths. This common year of this type contains two Friday the 13ths in April and July. Leap years starting on Sunday share this characteristic, but also have another in January.

A leap year starting on Sunday is any year with 366 days that begins on Sunday, 1 January, and ends on Monday, 31 December. Its dominical letters hence are AG, such as the years 1888, 1928, 1956, 1984, 2012, 2040, 2068, 2096, 2108, 2136, 2164, and 2192 in the Gregorian calendar or, likewise, 1996 and 2024 in the obsolete Julian calendar.

A leap year starting on Tuesday is any year with 366 days that begins on Tuesday, 1 January, and ends on Wednesday, 31 December. Its dominical letters hence are FE, such as the years 1884, 1924, 1952, 1980, 2008, 2036, 2064, 2092, and 2104 in the Gregorian calendar or, likewise, 1964, 1992, and 2020 in the obsolete Julian calendar. Any leap year that starts on Tuesday, Friday or Saturday has only one Friday the 13th; The only Friday the 13th in this leap year occurs in June. Common years starting on Wednesday share this characteristic.

A common year starting on Saturday is any non-leap year that begins on Saturday, 1 January, and ends on Saturday, 31 December. Its dominical letter hence is B. The most recent year of such kind was 2011 and the next one will be 2022 in the Gregorian calendar or, likewise, 2017 and 2023 in the obsolete Julian calendar, see below for more. Any common year that starts on Wednesday, Friday or Saturday has only one Friday the 13th; The only Friday the 13th in this common year occurs in May. Leap years starting on Friday share this characteristic.

A common year starting on Thursday is any non-leap year that begins on Thursday, 1 January, and ends on Thursday, 31 December. Its dominical letter hence is D. The most recent year of such kind was 2015 and the next one will be 2026 in the Gregorian calendar or, likewise, 2010 and 2021 in the obsolete Julian calendar, see below for more. This common year contains the most Friday the 13ths; specifically, the months of February, March, and November. Leap years starting on Sunday share this characteristic. From February until March in this type of year is also the shortest period that occurs within a Friday the 13th.

A leap year starting on Saturday is any year with 366 days that begins on Saturday, 1 January, and ends on Sunday, 31 December. Its dominical letters hence are BA, such as the years 1916, 1944, 1972, 2000, and 2028 in the Gregorian calendar or, likewise, 2012 and 2040 in the obsolete Julian calendar. In the Gregorian calendar all centennial leap years start on Saturday; the next such year will be 2400, see below for more.

A leap year starting on Friday is any year with 366 days that begins on Friday 1 January and ends on Saturday 31 December. Its dominical letters hence are CB, such as the years 1808, 1836, 1864, 1892, 1904, 1932, 1960, 1988, 2016, 2044, 2072, and 2112 in the Gregorian calendar or, likewise, 2000 and 2028 in the obsolete Julian calendar. Any leap year that starts on Tuesday, Friday or Saturday has only one Friday the 13th; The only Friday the 13th in this leap year occurs in May. Common years starting on Saturday share this characteristic.

A leap year starting on Thursday is any year with 366 days that begins on Thursday 1 January, and ends on Friday 31 December. Its dominical letters hence are DC, such as the years 1880, 1920, 1948, 1976, 2004, 2032, 2060, and 2088, in the Gregorian calendar or, likewise, 1988, 2016, and 2044 in the obsolete Julian calendar. Any leap year that starts on Monday, Wednesday or Thursday has two Friday the 13ths. This leap year contains two Friday the 13ths in February and August.

A leap year starting on Wednesday is any year with 366 days that begins on Wednesday, 1 January, and ends on Thursday, 31 December. Its dominical letters hence are ED, such as the years 1908, 1936, 1964, 1992, 2020, 2048, 2076, and 2116 in the Gregorian calendar or, likewise, 2004 and 2032 in the obsolete Julian calendar. Any leap year that starts on Monday, Wednesday or Thursday has two Friday the 13ths. This leap year contains two Friday the 13ths in March and November. Common years starting on Thursday share this characteristic, but also have another in February.

The determination of the day of the week for any date may be performed with a variety of algorithms. In addition, perpetual calendars require no calculation by the user, and are essentially lookup tables. A typical application is to calculate the day of the week on which someone was born or a specific event occurred.

Perpetual calendar calendar valid for many years

A perpetual calendar is a calendar valid for many years, usually designed to allow the calculation of the day of the week for a given date in the future.

Doomsday rule way of calculating the day of the week of a given date

The Doomsday rule is an algorithm of determination of the day of the week for a given date. It provides a perpetual calendar because the Gregorian calendar moves in cycles of 400 years.

References

  1. 1 2 3 Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.