Danuvius guggenmosi

Last updated

Danuvius guggenmosi
Temporal range: SerravallianTortonian (c.11.6 Ma )
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Suborder: Haplorhini
Infraorder: Simiiformes
Family: Hominidae
Subfamily: Homininae
Tribe: Dryopithecini
Genus: Danuvius
Böhme et al., 2019
Species:
D. guggenmosi
Binomial name
Danuvius guggenmosi
Böhme et al., 2019

Danuvius guggenmosi was an extinct species of great ape that lived 11.6 million years ago during the MiddleLate Miocene in southern Germany. It is the sole member of the genus Danuvius. The area at this time was probably a woodland with a seasonal climate. A male specimen was estimated to have weighed about 31 kg (68 lb), and two females 17 and 19 kg (37 and 42 lb). Both genus and species were described in November 2019. [1]

Contents

It is the first-discovered Late Miocene great ape with preserved long bones which could be used to reconstruct the limb anatomy and thus the locomotion of contemporary apes. Its discoverer, paleoanthropologist Madelaine Böhme, says Danuvius had adaptations for both hanging in trees (suspensory behavior) and walking on two legs (bipedalism)—whereas, among present-day great apes, humans are better adapted for the latter and the others the former. [1] Danuvius thus had a method of locomotion unlike any previously known ape called "extended limb clambering," she says, walking directly along tree branches as well as using arms for suspending itself. The last common ancestor between humans and other apes possibly had a similar method of locomotion. However, paleoanthropologist Scott Williams and others say the fragmentary remains do not differ enough from other fossil apes to provide such a clue to the origins of bipedalism. [2] [3]

Taxonomy

Hammerschmiede clay pit near Pforzen, where the fossils were found Tongrube Hammerschmiede 02.jpg
Hammerschmiede clay pit near Pforzen, where the fossils were found

The genus name Danuvius is a reference to the CelticRoman river-god Danuvius, a Roman name for the river Danube, which flows through the region where the remains were found. The specific name guggenmosi honours the amateur archaeologist Sigulf Guggenmos (1941–2018), who discovered the clay pit in which Danuvius was found. [1] [4]

The remains of Danuvius were discovered in the Hammerschmiede clay pit near the town of Pforzen in southern Germany, magnetostratigraphically dated to 11.62 million years ago (mya) at the Serravallian-Tortonian boundary (the AstaracianVallesian boundary in ELMA), [1] and were unearthed between 2015 and 2018. [3] The holotype GPIT/MA/10000 comprises a partial skeleton with elements of the mouth, vertebrae, and long bones. There are also three paratypes: an adult left femur (GPIT/MA/10001); an adult left femur, big toe, and teeth (GPIT/MA/10003); and juvenile teeth and a middle finger bone (GPIT/MA/10002). There are 37 specimens in total. [1]

Relief Map of Germany.svg
Red pog.svg
Hammerschmiede
Hammerschmiede (Bavaria, Germany), the locality where Danuvius was discovered

Its tooth anatomy is most similar to that of other dryopithecine great apes. Having both adaptations for hanging in trees (suspensory locomotion) and standing on two legs (bipedalism), Danuvius may have been very similar in locomotory methods to the last common ancestor between humans and other apes, which adds weight to the hypothesis that ape suspensory activity and human bipedalism both originated from a form capable of both. [1] However, it is too early to draw more definitive conclusions because it is unclear how Danuvius is related to modern great apes, including humans. [3] [5] Its discovery could also influence reconstructions of contemporary great ape limb anatomy and locomotion, which were previously by-and-large unknown. [1]

Description

Danuvius was small and probably weighed on average 23 kg (51 lb). The holotype specimen, an adult male, was calculated, based on the sizes of the hip and knee joints, to have weighed 26 to 37 kg (57 to 82 lb) with a point estimate of 31 kg (68 lb). The adult female specimen GPIT/MA/10003 was calculated to be 14 to 19 kg (31 to 42 lb) with a point estimate of 17 kg (37 lb), and the adult female GPIT/MA/10001 16 to 22 kg (35 to 49 lb) with a point estimate of 19 kg (42 lb). This is bigger than siamangs but much smaller than contemporary great apes; [1] for example, male bonobos weigh 39 kg (86 lb) and females 31 kg (68 lb). [6]

Danuvius limb proportions are most similar to those of bonobos. Bonobo at Apenheul Primate Park.jpg
Danuvius limb proportions are most similar to those of bonobos.

The sex of the individuals was determined by the size of the canines, with males presumed to have had larger canines than females. Male dryopithecines are thought to have had an elongated face with the molars pushed more towards the front of the mouth. Like those of other dryopithecines, the molars of Danuvius were wide, and there was a broad length between the two cusps; however, the premolars had three roots instead of two, and the canines were more vertically oriented rather than somewhat sticking out. [1]

Danuvius is thought to have had a broad chest. It is the first recorded Miocene great ape to have had the diaphragm located in the lower chest cavity, as in Homo , indicating an extended lower back and a greater number of functional lumbar vertebrae. This may have caused lordosis (the normal curvature of the human spine) and moved the center of mass over the hips and legs, which implies some habitual bipedal activity. [1]

The robust finger and hypertrophied wrist and elbow bones indicate a strong grip and load bearing adaptations for the arms. The legs also show adaptations for load-bearing, especially at the hypertrophied knee joint. There was likely limited ankle loading, and the ankle would have had a hinge-like function, being most stable if positioned perpendicularly to the leg as opposed to at an angle in apes. Danuvius was likely able to achieve a strong grip with its big toes, unlike modern African great apes, which would have allowed it to grasp onto thinner trees. The limb proportions are most similar to those of bonobos. [1]

Orangutan suspensory behavior 2014 Borneo Luyten-De-Hauwere-Bornean orangutan-08.jpg
Orangutan suspensory behavior

Adaptations for load bearing in both the arm and leg joints to this degree is unknown in any other primate. Plantigrade catarrhine monkeys lack the capacity for suspensory locomotion or to focus body weight over the knee joint; knuckle-walking apes lack strong big toes and thumbs, and have more robust finger bones; and both lack an extendable knee. Orangutans have a clambering motion too, but their knees lack weight-bearing ability. [1]

Paleoecology

The total anatomy of the limbs suggest Danuvius was capable of a seemingly unique manner of locomotion called "extended limb clambering". Danuvius likely walked along mildly inclined tree branches with its foot directly laid onto the branch, using its strong big toes for grasping. The strong knee joint would have provided balance while walking by counteracting torques, and the strong hands would have carried out a similar function during suspension or palm-walking. Extended limb clambering emphasizes knee extension and lordosis, as well as the suspensory mechanisms seen in apes, and may be a precursor to obligate bipedalism seen in human ancestors. [1]

Hammerschmiede has also yielded the remains of several small creatures such as molluscs, fish, and cold blooded vertebrates. Small mammals are the dominant fauna, [7] [8] such as rodents, rabbits, martens, hamsters, and shrews. However, large mammals are also known, such as the extinct mouse-deer Dorcatherium , [8] the antelope Miotragocerus , [7] and the rhinoceros Aceratherium . [8] The site is located in the Upper Freshwater Molasse of the Molasse basin; by the late Miocene, the Paratethys Sea had dried up and the Alps had lifted, allowing the expansion of wetland habitats in the basin. The late Miocene may have been the beginning of a drying trend characterized by increased seasonality, causing deciduous forest to turn into a less dense woodland, and fruit and leaf production to occur cyclically rather than year-round. [9] The late Miocene cooling trend may have led to the replacement of more tropical flora by mid-latitude and alpine varieties, and ultimately the extinction of European great apes. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Bipedalism</span> Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where a tetrapod moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.

<span class="mw-page-title-main">Homininae</span> Subfamily of mammals

Homininae, also called "African hominids" or "African apes", is a subfamily of Hominidae. It includes two tribes, with their extant as well as extinct species: 1) the tribe Hominini ―and 2) the tribe Gorillini (gorillas). Alternatively, the genus Pan is sometimes considered to belong to its own third tribe, Panini. Homininae comprises all hominids that arose after orangutans split from the line of great apes. The Homininae cladogram has three main branches, which lead to gorillas, and to humans and chimpanzees via the tribe Hominini and subtribes Hominina and Panina. There are two living species of Panina and two living species of gorillas, but only one extant human species. Traces of extinct Homo species, including Homo floresiensis have been found with dates as recent as 40,000 years ago. Organisms in this subfamily are described as hominine or hominines.

<i>Sahelanthropus</i> Extinct hominid from Miocene Africa

Sahelanthropus tchadensis is an extinct species of the hominid dated to about 7 million years ago, during the Miocene epoch. The species, and its genus Sahelanthropus, was announced in 2002, based mainly on a partial cranium, nicknamed Toumaï, discovered in northern Chad.

<i>Australopithecus afarensis</i> Extinct hominid from the Pliocene of East Africa

Australopithecus afarensis is an extinct species of australopithecine which lived from about 3.9–2.9 million years ago (mya) in the Pliocene of East Africa. The first fossils were discovered in the 1930s, but major fossil finds would not take place until the 1970s. From 1972 to 1977, the International Afar Research Expedition—led by anthropologists Maurice Taieb, Donald Johanson and Yves Coppens—unearthed several hundreds of hominin specimens in Hadar, Ethiopia, the most significant being the exceedingly well-preserved skeleton AL 288-1 ("Lucy") and the site AL 333. Beginning in 1974, Mary Leakey led an expedition into Laetoli, Tanzania, and notably recovered fossil trackways. In 1978, the species was first described, but this was followed by arguments for splitting the wealth of specimens into different species given the wide range of variation which had been attributed to sexual dimorphism. A. afarensis probably descended from A. anamensis and is hypothesised to have given rise to Homo, though the latter is debated.

<i>Oreopithecus</i> Extinct genus of hominid from the Miocene

Oreopithecus is an extinct genus of hominoid primate from the Miocene epoch whose fossils have been found in today's Tuscany and Sardinia in Italy. It existed nine to seven million years ago in the Tusco-Sardinian area when this region was an isolated island in a chain of islands stretching from central Europe to northern Africa in what was becoming the Mediterranean Sea.

<span class="mw-page-title-main">Brachiation</span> Form of arboreal locomotion involving swinging by the arm

Brachiation, or arm swinging, is a form of arboreal locomotion in which primates swing from tree limb to tree limb using only their arms. During brachiation, the body is alternately supported under each forelimb. This form of locomotion is the primary means of locomotion for the small gibbons and siamangs of southeast Asia. Gibbons in particular use brachiation for as much as 80% of their locomotor activities. Some New World monkeys, such as spider monkeys and muriquis, were initially classified as semibrachiators and move through the trees with a combination of leaping and brachiation. Some New World species also practice suspensory behaviors by using their prehensile tail, which acts as a fifth grasping hand. Evidence has shown that the extinct ape Proconsul from the Miocene of East Africa developed an early form of suspensory behaviour, and was therefore referred to as a probrachiator.

<i>Pierolapithecus</i> Extinct species of ape from Miocene Europe

Pierolapithecus catalaunicus is an extinct species of primate which lived around 12.5-13 million years ago during the Miocene in what is now Hostalets de Pierola, Catalonia, Spain. Some researchers believe that it is a candidate for common ancestor to the great ape clade, or is at least closer than any previous fossil discovery. Others suggest it being a pongine, or a dryopith. On 16 October 2023, scientists reported the facial reconstruction of the great ape.

<span class="mw-page-title-main">Knuckle-walking</span> Form of quadrupedal walking using the knuckles

Knuckle-walking is a form of quadrupedal walking in which the forelimbs hold the fingers in a partially flexed posture that allows body weight to press down on the ground through the knuckles. Gorillas and chimpanzees use this style of locomotion, as do anteaters and platypuses.

<i>Dryopithecus</i> Extinct great ape from Europe

Dryopithecus is a genus of extinct great apes from the middle–late Miocene boundary of Europe 12.5 to 11.1 million years ago (mya). Since its discovery in 1856, the genus has been subject to taxonomic turmoil, with numerous new species being described from single remains based on minute differences amongst each other, and the fragmentary nature of the holotype specimen makes differentiating remains difficult. There is currently only one uncontested species, the type species D. fontani, though there may be more. The genus is placed into the tribe Dryopithecini, which is either an offshoot of orangutans, African apes, or is its own separate branch.

Orthograde is a term derived from Greek ὀρθός, orthos + Latin gradi that describes a manner of walking which is upright, with the independent motion of limbs. Both New and Old World monkeys are primarily arboreal, and they have a tendency to walk with their limbs swinging in parallel to one another. This differs from the manner of walking demonstrated by the apes.

<i>Palaeopropithecus</i> Extinct genus of lemurs

Palaeopropithecus is a recently extinct genus of large sloth lemurs from Madagascar related to living lemur species found there today. Three species are known, Palaeopropithecus ingens, P. maximus, and P. kelyus. Radiocarbon dates indicate that they may have survived until around 1300–1620 CE. Malagasy legends of the tretretretre or tratratratra are thought to refer to P. ingens.

A facultative biped is an animal that is capable of walking or running on two legs (bipedal), as a response to exceptional circumstances (facultative), while normally walking or running on four limbs or more. In contrast, obligate bipedalism is where walking or running on two legs is the primary method of locomotion. Facultative bipedalism has been observed in several families of lizards and multiple species of primates, including sifakas, capuchin monkeys, baboons, gibbons, gorillas, bonobos and chimpanzees. Different facultatively bipedal species employ different types of bipedalism corresponding to the varying reasons they have for engaging in facultative bipedalism. In primates, bipedalism is often associated with food gathering and transport. In lizards, it has been debated whether bipedal locomotion is an advantage for speed and energy conservation or whether it is governed solely by the mechanics of the acceleration and lizard's center of mass. Facultative bipedalism is often divided into high-speed (lizards) and low-speed (gibbons), but some species cannot be easily categorized into one of these two. Facultative bipedalism has also been observed in cockroaches and some desert rodents.

<i>Ardipithecus ramidus</i> Extinct hominin from Early Pliocene Ethiopia

Ardipithecus ramidus is a species of australopithecine from the Afar region of Early Pliocene Ethiopia 4.4 million years ago (mya). A. ramidus, unlike modern hominids, has adaptations for both walking on two legs (bipedality) and life in the trees (arboreality). However, it would not have been as efficient at bipedality as humans, nor at arboreality as non-human great apes. Its discovery, along with Miocene apes, has reworked academic understanding of the chimpanzee–human last common ancestor from appearing much like modern-day chimpanzees, orangutans and gorillas to being a creature without a modern anatomical cognate.

<span class="mw-page-title-main">Human skeletal changes due to bipedalism</span> Evoltionary changes to the human skeleton as a consequence of bipedalism

The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.

<span class="mw-page-title-main">Hominidae</span> Family of primates

The Hominidae, whose members are known as the great apes or hominids, are a taxonomic family of primates that includes eight extant species in four genera: Pongo ; Gorilla ; Pan ; and Homo, of which only modern humans remain.

<span class="mw-page-title-main">Dryopithecini</span> Extinct tribe of apes

Dryopithecini is an extinct tribe of Eurasian and African great apes that are believed to be close to the ancestry of gorillas, chimpanzees and humans. Members of this tribe are known as dryopithecines.

<i>Hispanopithecus</i> Genus of apes from Miocene Europe

Hispanopithecus is a genus of apes that inhabited Europe during the Miocene epoch. It was first identified in a 1944 paper by J. F. Villalta and M. Crusafont in Notas y Comunicaciones del Instituto Geologico y Minero de España. Anthropologists disagree as to whether Hispanopithecus belongs to the subfamily Ponginae or Homininae.

Madelaine Böhme is a German palaeontologist and professor of palaeoclimatology at the University of Tübingen.

<i>Allgoviachen</i> Extinct genus of birds

Allgoviachen is an extinct genus of anatid bird from the Late Miocene (Tortonian) Hammerschmiede clay pits of Bavaria, Germany. The genus contains a single species, A. tortonica, known from bones belonging to the left leg.

<span class="mw-page-title-main">Hammerschmiede clay pit</span>

The Hammerschmiede clay pit is a fossil bearing locality in Pforzen, Bavaria, Germany most well known for the discovery of Danuvius guggenmosi, the potentially earliest known bipedal ape. With an age of 11.66-11.42 Ma the site dates to the transition between the Middle and Late Miocene epoch, providing an important window into the faunal changes taking place during this time. This correlates to the time just after the Serravallian-Tortonian boundary, and the MN zones 7/8. It is one of the most well-known Miocene sites, with over 15,000 individual fossils and 117 species having been discovered as of 2020. It has been called "the most important German paleontological discovery of the last decades".

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Böhme, M.; Spassov, N.; Fuss, J.; Tröscher, A.; Deane, A. S.; Prieto, J.; Kirscher, U.; Lechner, T.; Begun, D. R. (2019). "A new Miocene ape and locomotion in the ancestor of great apes and humans". Nature. 575 (7783): 489–493. Bibcode:2019Natur.575..489B. doi:10.1038/s41586-019-1731-0. PMID   31695194. S2CID   207888156.
  2. Williams, Scott A.; Prang, Thomas C.; Meyer, Marc R.; Russo, Gabrielle A.; Shapiro, Liza J. (2020-09-30). "Reevaluating bipedalism in Danuvius". Nature. 586 (7827): E1–E3. Bibcode:2020Natur.586E...1W. doi:10.1038/s41586-020-2736-4. ISSN   1476-4687. S2CID   222146537.
  3. 1 2 3 Barras, C. (2019). "Ancient ape offers clues to evolution of two-legged walking". Nature News. doi:10.1038/d41586-019-03418-2. PMID   33149311. S2CID   211644478.
  4. Ancient Languages of the Balkans, Part One. Paris: Mouton. 1976. p. 144.
  5. Kivell, T. L. (2019). "Fossil ape hints at how walking on two feet evolved". Nature News & Views. 575 (7783): 445–446. Bibcode:2019Natur.575..445K. doi: 10.1038/d41586-019-03347-0 . PMID   31745348.
  6. Lang, K. W.; de Waal, F. (1 December 2000). "Bonobo Pan paniscus". Primate Info Net. Wisconsin Primate Research Center. Retrieved 8 November 2019.
  7. 1 2 Fuss, J.; Prieto, J.; Böhme, M. (2015). "Revision of the boselaphin bovid Miotragocerus monacensis Stromer, 1928 (Mammalia, Bovidae) at the Middle to Late Miocene transition in Central Europe". Neues Jahrbuch für Geologie und Paläontologie. 276 (3): 229–265. doi:10.1127/njgpa/2015/0481. S2CID   134614174.
  8. 1 2 3 Mayr, V. H.; Fahlbusch, V. (1975). "Eine unterpliozäne Kleinsäugerfauna aus der Oberen Süßwasser-Molasse Bayerns" [Inter-Pliocene small mammal fauna from the Upper Freshwater Molasse of Bavaria](PDF). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie (in German). 15: 91–111.
  9. Eronen, J. T.; Rösner, G. E. (2007). "Wetland paradise lost: Miocene community dynamics in large herbivorous mammals from the German Molasse Basin". Evolutionary Ecology Research. 9: 471–494. doi:10.5282/ubm/epub.11444. S2CID   5488010.
  10. Merceron, G.; Kaiser, T. M.; Kostopoulos, D. S.; Schulz, E. (2010). "Ruminant diets and the Miocene extinction of European great apes". Proceedings of the Royal Society B. 277 (1697): 3105–3112. doi:10.1098/rspb.2010.0523. PMC   2982054 . PMID   20519220. Lock-green.svg