Folliculinidae

Last updated

Folliculinidae
Bulletin biologique de la France et de la Belgique (1888) (19808354803).jpg
Drawings of Folliculina limnoriae (3,4), F. abyssorum (5) and F. violacea (6)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Ciliophora
Class: Heterotrichea
Order: Heterotrichida
Family: Folliculinidae
Dons, 1914
Genera

Ampullofolliculina [1]
Ascobius [1]
Bickella [1]
Diafolliculina [1]
Eufolliculina [1]
Folliculina [1]
Folliculinopsis [1]
Freia (genus) [1]
Halofolliculina [1]
Lagotia [1]
Metafolliculina [1]
Mirofolliculina [1]
Orthofolliculina [1]
Parafolliculina [1]
Pseudofolliculina [1]

The Folliculinidae are a family of ciliates in the class Heterotrichea, with the common name "bottle-animalcule".

Description

Folliculinids are called "bottle-animalcules" because mature individuals are sessile and live inside a bottle-shaped lorica (shell). [2] The cell body has two wing-shaped protrusions, called peristomal wings, which carry the ciliary structures which are part of the oral apparatus, by which they feed. [2] [3] [4] Mature folliculinids are often attached to substrates like algae, plants, and animal shells or carapaces. They can be found in both marine and freshwater habitats, and feed on bacteria and other eukaryotic microorganisms. [3]

Many species are pigmented, and some species from the deep sea that live near hydrothermal vents form large and extensive mats, which are called "blue mats" because of the color from the ciliates. [5] These blue-mat folliculinids have a symbiotic association with bacteria, which may be found within the lorica, attached to the surface of the ciliate, and also inside the ciliate cells themselves. [6] Most of these bacteria are methanotrophs, which can use methane coming from the hydrothermal vents as a source of carbon and energy. [7]

About 30 genera of folliculinids are known, including Folliculina and Eufolliculina. [8] The folliculinid species Halofolliculina corallasia are argued by some to cause a disease in corals called Skeletal Eroding Band (SEB) syndrome.

Related Research Articles

<span class="mw-page-title-main">Siboglinidae</span> Family of annelid worms

Siboglinidae is a family of polychaete annelid worms whose members made up the former phyla Pogonophora and Vestimentifera. The family is composed of around 100 species of vermiform creatures which live in thin tubes buried in sediment (Pogonophora) or in tubes attached to hard substratum (Vestimentifera) at ocean depths ranging from 100 to 10,000 m. They can also be found in association with hydrothermal vents, methane seeps, sunken plant material, and whale carcasses.

<span class="mw-page-title-main">Heterotrich</span> Class of single-celled organisms

The heterotrichs are a class of ciliates. They typically have a prominent adoral zone of membranelles circling the mouth, used in locomotion and feeding, and shorter cilia on the rest of the body. Many species are highly contractile, and are typically compressed or conical in form. These include some of the largest protozoa, such as Stentor and Spirostomum, as well as many brightly pigmented forms, such as certain Blepharisma.

<span class="mw-page-title-main">Chemosynthesis</span> Biological process building organic matter using inorganic compounds as the energy source

In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules and nutrients into organic matter using the oxidation of inorganic compounds or ferrous ions as a source of energy, rather than sunlight, as in photosynthesis. Chemoautotrophs, organisms that obtain carbon from carbon dioxide through chemosynthesis, are phylogenetically diverse. Groups that include conspicuous or biogeochemically important taxa include the sulfur-oxidizing Gammaproteobacteria, the Campylobacterota, the Aquificota, the methanogenic archaea, and the neutrophilic iron-oxidizing bacteria.

<span class="mw-page-title-main">Hydrothermal vent</span> Fissure in a planets surface from which heated water emits

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharge. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

<span class="mw-page-title-main">Cold seep</span> Ocean floor area where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs

A cold seep is an area of the ocean floor where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water. On the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.

<i>Riftia pachyptila</i> Giant tube worm (species of annelid)

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents. The vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C, and this organism can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m, and their tubular bodies have a diameter of 4 cm (1.6 in).

<i>Kiwa hirsuta</i> Species of crustacean

Kiwa hirsuta is a crustacean discovered in 2005 in the South Pacific Ocean. This decapod, which is approximately 15 cm (5.9 in) long, is notable for the quantity of silky blond setae covering its pereiopods. Its discoverers dubbed it the "yeti lobster" or "yeti crab".

<i>Beggiatoa</i> Genus of bacteria

Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that  Beggiatoa  oxidized  hydrogen sulfide  (H2S) as an energy source, forming intracellular  sulfur  droplets, with oxygen as the terminal electron acceptor and CO2 used as a carbon source. Winogradsky named it in honor of the Italian doctor and botanist  Francesco Secondo Beggiato (1806 - 1883), from Venice. Winogradsky referred to this form of metabolism as "inorgoxidation" (oxidation of inorganic compounds), today called chemolithotrophy. These organisms live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents and in polluted marine environments. The finding represented the first discovery of lithotrophy. Two species of Beggiatoa have been formally described: the type species Beggiatoa alba and Beggiatoa leptomitoformis, the latter of which was only published in 2017. This colorless and filamentous bacterium, sometimes in association with other sulfur bacteria (for example the genus Thiothrix), can be arranged in biofilm visible to the naked eye formed by a very long white filamentous mat, the white color is due to the stored sulfur. Species of Beggiatoa have cells up to 200 µm in diameter and they are one of the largest prokaryotes on Earth.

<span class="mw-page-title-main">Bythograeidae</span> Family of crabs

The Bythograeidae are a small family of blind crabs which live around hydrothermal vents. The family contains 16 species in six genera. Their relationships to other crabs are unclear. They are believed to eat bacteria and other vent organisms. Bythograeidae are a monophyletic, sister taxon of the superfamily Xanthoidea which split to inhabit hydrothermal vents around the Eocene.

<span class="mw-page-title-main">Gammaproteobacteria</span> Class of bacteria

Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. It is composed by all Gram-negative microbes and is the most phylogenetically and physiologically diverse class of Proteobacteria.

Skeletal eroding band (SEB) is a disease of corals that appears as a black or dark gray band that slowly advances over corals, leaving a spotted region of dead coral in its wake. It is the most common disease of corals in the Indian and Pacific Oceans, and is also found in the Red Sea.

<span class="mw-page-title-main">Microbial mat</span> Multi-layered sheet of microorganisms

A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria and archaea, or bacteria alone. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

Halofolliculina corallasia is a species of heterotrich ciliates identified as a cause of the syndrome called skeletal eroding band (SEB). It is the first coral disease pathogen that is a protozoan as well as the first known to be a eukaryote; all others identified are bacteria. Like other members of the folliculinid family, H. corallasia is sessile and lives in a "house" called a lorica, into which the cell can retreat when disturbed. The mouth is flanked by a pair of wing-like projections that are fringed with polykinetids, groups of cilia that work in groups to produce a current that draws food into the "mouth".

<i>Bathynerita naticoidea</i> Species of gastropod

Bathynerita naticoidea is a species of small sea snail, a marine gastropod mollusc in the family Neritidae, the nerites. This species is endemic to underwater cold seeps in the northern Gulf of Mexico and in the Caribbean.

Sulfurimonas is a bacterial genus within the class of Campylobacterota, known for reducing nitrate, oxidizing both sulfur and hydrogen, and containing Group IV hydrogenases. This genus consists of four species: Sulfurimonas autorophica, Sulfurimonas denitrificans, Sulfurimonas gotlandica, and Sulfurimonas paralvinellae. The genus' name is derived from "sulfur" in Latin and "monas" from Greek, together meaning a “sulfur-oxidizing rod”. The size of the bacteria varies between about 1.5-2.5 μm in length and 0.5-1.0 μm in width. Members of the genus Sulfurimonas are found in a variety of different environments which include deep sea-vents, marine sediments, and terrestrial habitats. Their ability to survive in extreme conditions is attributed to multiple copies of one enzyme. Phylogenetic analysis suggests that members of the genus Sulfurimonas have limited dispersal ability and its speciation was affected by geographical isolation rather than hydrothermal composition. Deep ocean currents affect the dispersal of Sulfurimonas spp., influencing its speciation. As shown in the MLSA report of deep-sea hydrothermal vents Campylobacterota, Sulfurimonas has a higher dispersal capability compared with deep sea hydrothermal vent thermophiles, indicating allopatric speciation.

Ocean Networks Canada is a world-leading research and ocean observing facility hosted and owned by the University of Victoria, and managed by the not-for profit ONC Society. ONC operates unparalleled observatories in the deep ocean and coastal waters of Canada’s three coasts–the Arctic, the Pacific and the Atlantic–gathering biological, chemical, geological and physical data to drive solutions for science, industry and society. ONC operates the NEPTUNE and VENUS cabled ocean observatories in the northeast Pacific Ocean and the Salish Sea. Additionally, Ocean Networks Canada operates smaller community-based observatories offshore from Cambridge Bay, Nunavut., Campbell River, Kitamaat Village and Digby Island. These observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods. As with other ocean observatories such as ESONET, Ocean Observatories Initiative, MACHO and DONET, scientific instruments connected to Ocean Networks Canada are operated remotely and provide continuous streams of freely available data to researchers and the public. Over 200 gigabytes of data are collected every day.

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<span class="mw-page-title-main">Armophorea</span> Class of single-celled organisms

Armophorea is a class of ciliates in the subphylum Intramacronucleata. . It was first resolved in 2004 and comprises three orders: Metopida, Clevelandellida, and Armophorida. Previously members of this class were thought to be heterotrichs because of similarities in morphology, most notably a characteristic dense arrangement of cilia surrounding their oral structures. However, the development of genetic tools and subsequent incorporation of DNA sequence information has led to major revisions in the evolutionary relationships of many protists, including ciliates. Metopids, clevelandellids, and armophorids were grouped into this class based on similarities in their small subunit rRNA sequences, making them one of two so-called "riboclasses" of ciliates, however, recent analyses suggest that Armophorida may not be related to the other two orders.

<i>Zoothamnium niveum</i> Species of single-celled organism

Zoothamnium niveum is a species of ciliate protozoan which forms feather-shaped colonies in marine coastal environments. The ciliates form a symbiosis with sulfur-oxidizing chemosynthetic bacteria of the species "Candidatus Thiobios zoothamnicoli", which live on the surface of the colonies and give them their unusual white color.

<span class="mw-page-title-main">Hydrothermal vent microbial communities</span> Undersea unicellular organisms

The hydrothermal vent microbial community includes all unicellular organisms that live and reproduce in a chemically distinct area around hydrothermal vents. These include organisms in the microbial mat, free floating cells, or bacteria in an endosymbiotic relationship with animals. Chemolithoautotrophic bacteria derive nutrients and energy from the geological activity at Hydrothermal vents to fix carbon into organic forms. Viruses are also a part of the hydrothermal vent microbial community and their influence on the microbial ecology in these ecosystems is a burgeoning field of research.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "Bickella - Overview - Encyclopedia of Life". Encyclopedia of Life.
  2. 1 2 Andrews, E. A. (1914-05-01). "The bottle-animalcule, folliculina; œcological notes". The Biological Bulletin. 26 (5): 262–285. doi:10.2307/1536068. ISSN   0006-3185. JSTOR   1536068.
  3. 1 2 Lynn, Denis H. (2008). Lynn, Denis H (ed.). The Ciliated Protozoa. Dordrecht: Springer. doi:10.1007/978-1-4020-8239-9. ISBN   978-1-4020-8238-2.
  4. Smith, Mol. "Micscape Microscopy and Microscope Magazine". www.microscopy-uk.org.uk. Retrieved 2017-07-25.
  5. "Sunday Protist -- Blue Mats of the deep sea: Folliculinopsis". skepticwonder.fieldofscience.com. Retrieved 2017-07-25.
  6. Kouris, Angela; Kim Juniper, S.; Frébourg, Ghislaine; Gaill, Françoise (2007-03-01). "Protozoan–bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge". Marine Ecology. 28 (1): 63–71. doi: 10.1111/j.1439-0485.2006.00118.x . ISSN   1439-0485.
  7. Pasulka, Alexis L.; Goffredi, Shana K.; Tavormina, Patricia L.; Dawson, Katherine S.; Levin, Lisa A.; Rouse, Greg W.; Orphan, Victoria J. (2017). "Colonial Tube-Dwelling Ciliates Influence Methane Cycling and Microbial Diversity within Methane Seep Ecosystems". Frontiers in Marine Science. 3. doi: 10.3389/fmars.2016.00276 . ISSN   2296-7745.
  8. "WoRMS - World Register of Marine Species - Folliculinidae Dons, 1914". www.marinespecies.org. Retrieved 2017-07-25.