NGC 4833

Last updated
NGC 4833
A sky full of stars NGC 4833.jpg
NGC 4833 is one of the over 150 globular clusters known to reside within the Milky Way. [1]
Observation data (J2000 epoch)
Class VIII [2]
Constellation Musca
Right ascension 12h 59m 33.92s [3]
Declination –70° 52 35.4 [3]
Distance 21.5  kly (6.6  kpc) [4]
Apparent magnitude (V)+7.79 [5]
Apparent dimensions (V)13.5
Physical characteristics
Mass4.10×105 [4]   M
Radius42 ly [6]
Metallicity  = –1.71 [7] dex
Estimated age12.54  Gyr [7]
Other designations Caldwell 105, GCl 21, [5] Lacaille I.4
Dunlop 164, Bennett 56
See also: Globular cluster, List of globular clusters
The location of NGC 4833 (labelled in red) NGC4833Location.png
The location of NGC 4833 (labelled in red)

NGC 4833 (also known as Caldwell 105) is a globular cluster discovered by Abbe Lacaille during his 1751-1752 journey to South Africa, and catalogued in 1755. [8] It was subsequently observed and catalogued by James Dunlop and Sir John Herschel whose instruments could resolve it into individual stars.

Contents

The globular cluster is situated in the very southerly constellation Musca at a distance of 21,200 light years from Earth. It is partially obscured by a dusty region of the galactic plane. After corrections for the reddening by dust, evidence was obtained that it is in the order of 2 billion years older than globular clusters M5 or M92.

See also

Related Research Articles

<span class="mw-page-title-main">Messier 107</span> Globular cluster in Ophiuchus

Messier 107 or M107, also known as NGC 6171 or the Crucifix Cluster, is a very loose globular cluster in a very mildly southern part of the sky close to the equator in Ophiuchus, and is the last such object in the Messier Catalogue.

<span class="mw-page-title-main">Messier 19</span> Globular cluster in Ophiuchus

Messier 19 or M19 is a globular cluster in the constellation Ophiuchus. It was discovered by Charles Messier on June 5, 1764 and added to his catalogue of comet-like objects that same year. It was resolved into individual stars by William Herschel in 1784. His son, John Herschel, described it as "a superb cluster resolvable into countless stars". The cluster is located 4.5° WSW of Theta Ophiuchi and is just visible as a fuzzy point of light using 50 mm (2.0 in) binoculars. Using a telescope with a 25.4 cm (10.0 in) aperture, the cluster shows an oval appearance with a 3 × 4 core and a 5 × 7 halo.

<span class="mw-page-title-main">Messier 30</span> Globular cluster in the constellation Capricornus

Messier 30 is a globular cluster of stars in the southeast of the southern constellation of Capricornus, at about the declination of the Sun when the latter is at December solstice. It was discovered by the French astronomer Charles Messier in 1764, who described it as a circular nebula without a star. In the New General Catalogue, compiled during the 1880s, it was described as a "remarkable globular, bright, large, slightly oval." It can be easily viewed with a pair of 10×50 binoculars, forming a patch of hazy light some 4 arcminutes wide that is slightly elongated along the east–west axis. With a larger instrument, individual stars can be resolved and the cluster will cover an angle of up to 12 arcminutes across graduating into a compressed core about one arcminute wide that has further star density within.

<span class="mw-page-title-main">Messier 53</span> Globular cluster in the constellation Coma Berenices

Messier 53 is a globular cluster in the Coma Berenices constellation. It was discovered by Johann Elert Bode in 1775. M53 is one of the more outlying globular clusters, being about 60,000 light-years (18.4 kpc) light-years away from the Galactic Center, and almost the same distance from the Solar System. The cluster has a core radius (rc) of 2.18 pc, a half-light radius (rh) of 5.84 pc, and a tidal radius (rtr) of 239.9 pc.

<span class="mw-page-title-main">Messier 56</span> Globular cluster in the constellation Lyra

Messier 56 is a globular cluster in the constellation Lyra. It was discovered by Charles Messier in 1779. It is angularly found about midway between Albireo and Sulafat. In a good night sky it is tricky to find with large (50–80 mm) binoculars, appearing as a slightly fuzzy star. The cluster can be resolved using a telescope with an aperture of 8 in (20 cm) or larger.

<span class="mw-page-title-main">Messier 62</span> Globular cluster in the constellation Ophiuchus

Messier 62 or M62, also known as NGC 6266 or the Flickering Globular Cluster, is a globular cluster of stars in the south of the equatorial constellation of Ophiuchus. It was discovered in 1771 by Charles Messier, then added to his catalogue eight years later.

<span class="mw-page-title-main">Messier 70</span> Globular cluster in the constellation Sagittarius

Messier 70 or M70, also known as NGC 6681, is a globular cluster of stars to be found in the south of Sagittarius. It was discovered by Charles Messier in 1780. The famous comet Hale–Bopp was discovered near this cluster in 1995.

<span class="mw-page-title-main">NGC 5466</span> Class XII globular cluster in the constellation Boötes

NGC 5466 is a class XII globular cluster in the constellation Boötes. Located 51,800 light years from Earth and 52,800 light years from the Galactic Center, it was discovered by William Herschel on May 17, 1784, as H VI.9. This globular cluster is unusual insofar as it contains a certain blue horizontal branch of stars, as well as being unusually metal poor like ordinary globular clusters. It is thought to be the source of a stellar stream discovered in 2006, called the 45 Degree Tidal Stream. This star stream is an approximately 1.4° wide star lane extending from Boötes to Ursa Major.

<span class="mw-page-title-main">NGC 5986</span> Globular cluster in the constellation Lupus

NGC 5986 is a globular cluster of stars in the southern constellation of Lupus, located at a distance of approximately 34 kilolight-years from the Sun. It was discovered by Scottish astronomer James Dunlop on May 10, 1826. John L. E. Dreyer described it as, "a remarkable object, a globular cluster, very bright, large, round, very gradually brighter middle, stars of 13th to 15th magnitude". Its prograde–retrograde orbit through the Milky Way galaxy is considered irregular and highly eccentric. It has a mean heliocentric radial velocity of +100 km/s. The galacto-centric distance is 17 kly (5.2 kpc), which puts it in the galaxy's inner halo.

<span class="mw-page-title-main">NGC 6723</span> Globular cluster in the constellation Sagittarius

NGC 6723, also known as the Chandelier Cluster, is a globular cluster in the constellation Sagittarius. Its magnitude is given as between 6 and 6.8, and its diameter is between 7 and 11 arcminutes. It is a class VII cluster with stars of magnitude 14 and dimmer. It is near the border of Sagittarius and Corona Australis.

<span class="mw-page-title-main">NGC 6752</span> Globular cluster in the constellation Pavo

NGC 6752 is a globular cluster in the constellation Pavo. It is the fourth-brightest globular cluster in the sky, after Omega Centauri, 47 Tucanae and Messier 22, respectively. It is best seen from June to October in the Southern Hemisphere.

<span class="mw-page-title-main">NGC 6760</span> Globular cluster in the constellation Aquila

NGC 6760 is a globular cluster in the constellation Aquila. It may have contributed to the formation of the open cluster Ruprecht 127 during NGC 6760's passage through the galactic disk 71 million years ago.

<span class="mw-page-title-main">NGC 6934</span> Globular cluster in the constellation Delphinus

NGC 6934 is a globular cluster of stars in the northern constellation of Delphinus, about 52 kilolight-years distant from the Sun. It was discovered by the German-born astronomer William Herschel on 24 September 1785. The cluster is following a highly eccentric orbit through the Milky Way along an orbital plane that is inclined by 73° to the galactic plane. It may share a common dynamic origin with NGC 5466. As of 2018, it has been poorly studied.

<span class="mw-page-title-main">NGC 1261</span> Globular cluster in the constellation Horologium

NGC 1261 is a globular cluster of stars in the southern constellation of Horologium, first discovered by Scottish astronomer James Dunlop in 1826. The cluster is located at a distance of 53 kilolight-years from the Sun, and 59 kilolight-years from the Galactic Center. It is about 10.24 billion years old with 341,000 times the mass of the Sun. The cluster does not display the normal indications of core collapse, but evidence suggests it may have instead passed through a post core-collapse bounce state within the past two billion years. The central luminosity density is 2.22 L·pc−3, which is low for a globular cluster. Despite this, it has a Shapley–Sawyer Concentration Class of II, indicating a dense central concentration.

<span class="mw-page-title-main">NGC 6352</span> Globular cluster in the constellation Ara

NGC 6352 is a globular cluster of stars in the southern constellation of Ara, located approximately 18.3 kly from the Sun. It was discovered by Scottish astronomer James Dunlop on May 14, 1826. The cluster has a Shapley–Sawyer Concentration Class of XI:. A telescope with a 15 cm (5.9 in) aperture is required to resolve the stars within this loose cluster.

<span class="mw-page-title-main">NGC 6496</span> Globular cluster in the constellation Scorpius

NGC 6496 is a globular cluster which is in the direction of the Milky Way's galactic bulge based on observations collected with the WFPC2 on board the Hubble Space Telescope. NGC 6496 was originally believed to be a member of the disc system of the Galactic Center, but scientists questioned this classification. It was instead suggested that NGC 6496, together with two other clusters, NGC 6624 and NGC 6637, could be halo clusters with strongly inclined orbits. NGC 6496 lies in the Southern sky at RA=17:59:03.68 and Dec=-44:15:57.4.

<span class="mw-page-title-main">NGC 6541</span> Globular cluster in the constellation Corona Australis

NGC 6541 is a globular cluster in the southern constellation of Corona Australis. It is estimated to be around 14 billion years old.

<span class="mw-page-title-main">NGC 5286</span> Globular cluster in the constellation Centaurus

NGC 5286 is a globular cluster of stars located some 35,900 light years away in the constellation Centaurus. At this distance, the light from the cluster has undergone reddening from interstellar gas and dust equal to E(B – V) = 0.24 magnitude in the UBV photometric system. The cluster lies 4 arc-minutes north of the naked-eye star M Centauri. It was discovered by Scottish astronomer James Dunlop, active in Australia, and listed in his 1827 catalog.

<span class="mw-page-title-main">NGC 4372</span> Globular cluster in the constellation Musca

NGC 4372 is a globular cluster in the southern constellation of Musca. It is southwest of γ Muscae and west of the southern end of the Dark Doodad Nebula, a 3° thin streak of black across a southern section of the great plane of the Milky Way.

<span class="mw-page-title-main">NGC 6388</span> Globular cluster in the constellation Scorpius

NGC 6388 is a globular cluster of stars located in the southern constellation of Scorpius. The cluster was discovered by Scottish astronomer James Dunlop on May 13, 1826 using a 20 cm (9 in) reflector telescope. It was later determined to be a globular cluster by English astronomer John Herschel, who was able to resolve it into individual stars. NGC 6388 is located at a distance of approximately 35,600 light-years (10.90 kpc) from the Sun. Due to its apparent visual magnitude of +6.8, binoculars or a small telescope are required to view it.

References

  1. "A sky full of stars". www.spacetelescope.org. Retrieved 1 August 2016.
  2. Shapley, Harlow; Sawyer, Helen B. (August 1927), "A Classification of Globular Clusters", Harvard College Observatory Bulletin, 849 (849): 11–14, Bibcode:1927BHarO.849...11S.
  3. 1 2 Goldsbury, Ryan; et al. (December 2010), "The ACS Survey of Galactic Globular Clusters. X. New Determinations of Centers for 65 Clusters", The Astronomical Journal, 140 (6): 1830–1837, arXiv: 1008.2755 , Bibcode:2010AJ....140.1830G, doi:10.1088/0004-6256/140/6/1830, S2CID   119183070.
  4. 1 2 Boyles, J.; et al. (November 2011), "Young Radio Pulsars in Galactic Globular Clusters", The Astrophysical Journal, 742 (1): 51, arXiv: 1108.4402 , Bibcode:2011ApJ...742...51B, doi:10.1088/0004-637X/742/1/51, S2CID   118649860.
  5. 1 2 "NGC 4833". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2006-11-17.
  6. distance × tan( diameter_angle / 2 ) = 42 ly. radius
  7. 1 2 Forbes, Duncan A.; Bridges, Terry (May 2010), "Accreted versus in situ Milky Way globular clusters", Monthly Notices of the Royal Astronomical Society , 404 (3): 1203–1214, arXiv: 1001.4289 , Bibcode:2010MNRAS.404.1203F, doi: 10.1111/j.1365-2966.2010.16373.x , S2CID   51825384.
  8. Jones, K. G. (March 1969). "The search for the nebulae - VI". Journal of the British Astronomical Association. 79: 213–222. Bibcode:1969JBAA...79..213J.
  1. CCD Photometry of the Globular Cluster NGC 4833 and Extinction Near the Galactic Plane, Melbourne et al., 25 September 2000, Astrophysical Journal