Plesiocystis | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | Plesiocystis |
Type species | |
Plesiocystis pacifica Iizuka et al. 2003 | |
Species | |
Plesiocystis is a genus of myxobacteria. It is a monotypic taxon containing only its type species, Plesiocystis pacifica . Both the genus and the species were first described in 2003, based on two strains isolated from samples collected from the Pacific coast of Japan. [1]
Cells of Plesiocystis species are straight, rod-shaped, and have blunt ends. They move by bacterial gliding and can form aggregates of cells known as fruiting bodies. They have distinctive cellular metabolism featuring, among other characteristics, partially saturated menaquinone (MK-8(H2)), polyunsaturated fatty acid production, and an absence of hydroxy fatty acids. Like typical myxobacteria, they have high GC content. [1]
The genus Plesiocystis was first described in 2003 on the basis of two strains of a single species, Plesiocystis pacifica , and remains a monotypic taxon. Originally placed in the suborder Soranginae , reclassification has since assigned this taxon to the suborder Nannocystineae . [3] The genus name is derived from the Greek words plesion (neighbor) and cystis (bladder), noting the genus' relationship to another genus of myxobacteria, Nannocystis . [1]
The myxobacteria are a group of bacteria that predominantly live in the soil and feed on insoluble organic substances. The myxobacteria have very large genomes relative to other bacteria, e.g. 9–10 million nucleotides except for Anaeromyxobacter and Vulgatibacter. One species of myxobacteria, Minicystis rosea, has the largest known bacterial genome with over 16 million nucleotides. The second largest is another myxobacteria Sorangium cellulosum.
The Chloroflexia are a class of bacteria in the phylum Chloroflexota. Chloroflexia are typically filamentous, and can move about through bacterial gliding. It is named after the order Chloroflexales.
The Hydrogenophilaceae are a family of the Hydrogenophilalia, with two genera – Hydrogenophilus and Tepidiphilus. Like all Pseudomonadota, they are Gram-negative. All known species are thermophilic, growing around 50 °C and using molecular hydrogen or organic molecules as their source of electrons to support growth - some species are autotrophs.
Erysipelothrix is a genus of bacteria containing four described species: Erysipelothrix rhusiopathiae, Erysipelothrix tonsillarum, Erysipelothrix inopinata and Erysipelothrix larvae. Additional species have been proposed based on DNA-DNA hybridization studies. "The hallmark of Erysipelothrix is the presence of a type B cell wall, in which the peptide bridge is formed between amino acids at positions 2 and 4 of adjacent peptide side-chains and not, as in the vast majority of bacteria, between amino acids at positions 3 and 4."
Marinobacter hydrocarbonoclasticus is a species of bacteria found in sea water which are able to degrade hydrocarbons. The cells are rod-shaped and motile by means of a single polar flagellum.
Desulfobacter hydrogenophilus is a strictly anaerobic sulfate-reducing bacterium. It was isolated and characterized in 1987 by Friedrich Widdel of the University of Konstanz (Germany). Like most sulfate-reducing bacteria (SRB), D. hydrogenophilus is capable of completely oxidizing organic compounds (specifically acetate, pyruvate and ethanol) to CO2, and therefore plays a key role in biomineralization in anaerobic marine environments. However, unlike many SRB, D. hydrogenophilus is a facultative lithoautotroph, and can grow using H2 as an electron donor and CO2 as a carbon source. D. hydrogenophilus is also unique because it is psychrophilic (and has been shown to grow at temperatures as low as 0 °C or 32 °F). It is also diazotrophic, or capable of fixing nitrogen.
Paenibacillus tylopili is a soil-dwelling, Gram-positive, rod-shaped bacterium. Described as new to science in 2008, it was found in the mycorhizosphere of the bolete fungus Tylopilus felleus.
Rhodoferax is a genus of Betaproteobacteria belonging to the purple nonsulfur bacteria. Originally, Rhodoferax species were included in the genus Rhodocyclus as the Rhodocyclus gelatinous-like group. The genus Rhodoferax was first proposed in 1991 to accommodate the taxonomic and phylogenetic discrepancies arising from its inclusion in the genus Rhodocyclus. Rhodoferax currently comprises four described species: R. fermentans, R. antarcticus, R. ferrireducens, and R. saidenbachensis. R. ferrireducens, lacks the typical phototrophic character common to two other Rhodoferax species. This difference has led researchers to propose the creation of a new genus, Albidoferax, to accommodate this divergent species. The genus name was later corrected to Albidiferax. Based on geno- and phenotypical characteristics, A. ferrireducens was reclassified in the genus Rhodoferax in 2014. R. saidenbachensis, a second non-phototrophic species of the genus Rhodoferax was described by Kaden et al. in 2014.
Oleispira antarctica is a hydrocarbonoclastic marine bacterium, the type species in its genus. It is psychrophilic, aerobic and Gram-negative, with polar flagellum. Its genome has been sequenced and from this information, it has been recognized as a potentially important organism capable of oil degradation in the deep sea.
Salinispora is a genus of obligately aerobic, gram-positive, non-acid-fast bacteria belonging to the family of Micromonosporaceae. They are heterotrophic, non-motile, and obligately grow under high osmotic/ionic-strength conditions. They are the first identified genus of gram-positive bacteria which has a high osmotic/ionic-strength requirement for survival. They are widely abundant in tropical marine sediments and were first identified in 2002. This genus of bacteria has potential biotechnological significance due to their production of novel secondary metabolites which can be used pharmaceutically.
Nocardiopsis sinuspersici is a species of bacteria that is an aerobic, Gram positive, alkalohalophilic, actinomycete. While species from the genus Nocardiopsis have been found in a variety of environments, primarily soils, strain N. sinuspersici sp. nov was isolated from sandy rhizospheric soils from Sarbandar and Khoramshahr in Iran.
Corynebacterium uropygiale is a bacterium described in 2016 following thorough investigations using a polyphasic approach including MALDI-TOF mass spectrometry, phylogeny of 16S rRNA and rpoB genes and DNA fingerprinting. To date, it has been regarded as endemic to preen gland secretions of healthy turkeys . It is a member of the genus Corynebacterium, which belongs to the phylum Actinomycetota. Although a large number of bacteria including corynebacteria have been reported as part of the normal microbiome of birds, C. uropygiale is the only member of the genus that has been recovered in preen gland secretions of birds. It is one of three bacterial species to have been found to colonize preen gland secretions of birds.
Dokdonia is a genus of bacteria in the family Flavobacteriaceae and phylum Bacteroidota.
Plesiocystis pacifica is a species of marine myxobacteria. Like other members of this order, P. pacifica is a rod-shaped Gram-negative bacterium that can move by gliding and can form aggregates of cells called fruiting bodies. The species was first described in 2003, based on two strains isolated from samples collected from the Pacific coast of Japan.
Enhygromyxa salina is a species of marine myxobacteria. Like other members of this order, E. salina is a rod-shaped Gram-negative bacterium that can move by gliding and can form aggregates of cells called fruiting bodies. E. salina is slightly halophilic (salt-tolerant) and can grow at lower temperatures than other marine myxobacteria. Several novel secondary metabolites have been identified in the species, including unusual sterols. The species was first described in 2003, based on six strains isolated from samples collected from the coastlines of Japan.
Salisediminibacterium halotolerans is a gram-positive, alkalitolerant, and halophilic bacterium from the family Bacillaceae and genus of Salisediminibacterium, which was one of three bacterial strains, and the only novel species, isolated from sediments from the Xiarinaoer soda lake in Mongolia in 2012.
Arthrobacter bussei is a pink-coloured, aerobic, coccus-shaped, Gram-stain-positive, oxidase-positive and catalase-positive bacterium isolated from cheese made of cow´s milk. A. bussei is non-motile and does not form spores. Rod–coccus life cycle is not observed. Cells are 1.1–1.5 µm in diameter. On trypticase soy agar it forms pink-coloured, raised and round colonies, which are 1.0 mm in diameter after 5 days at 30 °C The genome of the strain A. bussei KR32T has been fully sequenced.
Cytophagales is an order of non-spore forming, rod-shaped, Gram-negative bacteria that move through a gliding or flexing motion. These chemoorganotrophs are important remineralizers of organic materials into micronutrients. They are widely dispersed in the environment, found in ecosystems including soil, freshwater, seawater and sea ice. Cytophagales is included in the Bacteroidota phylum.
Oceanihabitans is a genus of marine bacterium in the family Flavobacteriaceae. It contains a single species, O. sediminis. It is aerobic, Gram-negative, rod-shaped, and motile by gliding. O. sediminis produces flexirubin pigments. It is positive for cytochrome c oxidase and catalase. O. sediminis can use glucose, mannose, maltose and adipic acid as sole carbon sources for chemoheterotrophic growth. It is a chemoorganotroph and is chemotaxonomically characterized by the presence of menaquinone 6 (MK-6). The type strain is S9-10T.
Vulgatibacteraceae is a monotypic family of bacteria in the order Myxococcales, containing one species in one genus; Vulgatibacter incomptus. The bacteria were first isolated from soil samples from Yakushima in 2014. The bacteria of this family are motile rods, and, like all myxococcota, are gram-negative. The one species, Vulgatibacter incomptus is believed to be most closely related to the species Cystobacter armeniaca and Anaeromyxobacter dehalogenans.