Polyphosphate kinase

Last updated
polyphosphate kinase
Identifiers
EC no. 2.7.4.1
CAS no. 9026-44-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Polyphosphate kinase
Identifiers
SymbolPP_kinase
Pfam PF02503
InterPro IPR003414
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1xdo B:2-682 1xdp B:2-682

In enzymology, a polyphosphate kinase (EC 2.7.4.1), or polyphosphate polymerase, is an enzyme that catalyzes the formation of polyphosphate from ATP, with chain lengths of up to a thousand or more orthophosphate moieties. [1]

Contents

ATP + (phosphate)n ADP + (phosphate)n+1

Thus, the two substrates of this enzyme are ATP and polyphosphate [(phosphate)n], whereas its two products are ADP and polyphosphate extended by one phosphate moiety [(phosphate)n+1].

This enzyme is a membrane protein and goes through an intermediate stage during the reaction where it is autophosphorylated with a phosphate group covalently linked to a basic amino acyl residue through an N-P bond.

Several enzymes catalyze polyphosphate polymerization. Some of these enzymes couple phosphotransfer to transmembrane transport. These enzyme/transporters are categorized in the Transporter Classification Database (TCDB) under the Polyphosphate Polymerase/YidH Superfamily (TC# 4.E.1) and are transferases that transfer phosphoryl groups (phosphotransferases) with polyphosphate as the acceptor. The systematic name of this enzyme class is ATP:polyphosphate phosphotransferase. This enzyme is also called polyphosphoric acid kinase.

Families

The Polyphosphate Polymerase Superfamily (TC# 4.E.1) includes the following families:

The Vacuolar (Acidocalcisome) Polyphosphate Polymerase (V-PPP) Family

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. [2] [3] Gerasimaitė et al. [4] showed that polyP produced in the cytosol of yeast is toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, showed that cytosolic polyP cannot be imported whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a (partial) driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and has nine vacuolar transmembrane segments (TMSs). Mutations in the VTC transmembrane regions, which may constitute the translocation channel, block not only polyP translocation but also synthesis. Since these mutations are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its vesicular import in order to avoid toxic intermediates in the cytosol. The process therefore conforms to the classical definition of Group Translocation, where the substrate is modified during transport. Sequestration of otherwise toxic polyP may be one reason for the existence of this mechanism in acidocalcisomes. [4] The vacuolar polyphosphate kinase (polymerase) is described in TCDB with family TC# 4.E.1. [5]

Function

CYTH-like superfamily enzymes, which include polyphosphate polymerases, hydrolyze triphosphate-containing substrates and require metal cations as cofactors. They have a unique active site located at the center of an eight-stranded antiparallel beta barrel tunnel (the triphosphate tunnel). The name CYTH originated from the gene designation for bacterial class IV adenylyl cyclases (CyaB), and from thiamine triphosphatase (THTPA). Class IV adenylate cyclases catalyze the conversion of ATP to 3',5'-cyclic AMP (cAMP) and PPi. Thiamine triphosphatase is a soluble cytosolic enzyme which converts thiamine triphosphate to thiamine diphosphate. This domain superfamily also contains RNA triphosphatases, membrane-associated polyphosphate polymerases, tripolyphosphatases, nucleoside triphosphatases, nucleoside tetraphosphatases and other proteins with unknown functions.

The generalized reaction catalyzed by the vectorial polyphosphate polymerases is: [5]

ATP + (phosphate)n in the cytoplasm ADP + (phosphate)n+1 in the vacuolar lumen

Structure

VTC2 has three recognized domains: an N-terminal SPX domain, a large central CYTH-like domain and a smaller transmembrane VTC1 (DUF202) domain. The SPX domain is found in Syg1, Pho81, XPR1 (SPX), and related proteins. This domain is found at the amino termini of a variety of proteins. In the yeast protein, Syg1, the N-terminus directly binds to the G-protein beta subunit and inhibits transduction of the mating pheromone signal. Similarly, the N-terminus of the human XPR1 protein binds directly to the beta subunit of the G-protein heterotrimer, leading to increased production of cAMP. Thus, this domain is involved in G-protein associated signal transduction. The N-termini of several proteins involved in the regulation of phosphate transport, including the putative phosphate level sensors, Pho81 from Saccharomyces cerevisiae and NUC-2 from Neurospora crassa , have this domain.

The SPX domains of the S. cerevisiae low-affinity phosphate transporters, Pho87 and Pho90, auto-regulate uptake and prevent efflux. This SPX-dependent inhibition is mediated by a physical interaction with Spl2. NUC-2 contains several ankyrin repeats. Several members of this family are annotated as XPR1 proteins: the xenotropic and polytropic retrovirus receptor confers susceptibility to infection with xenotropic and polytropic murine leukaemia viruses (MLV). Infection by these retroviruses can inhibit XPR1-mediated cAMP signaling and result in cell toxicity and death. The similarity between Syg1 phosphate regulators and XPR1 sequences has been noted, as has the additional similarity to several predicted proteins of unknown function, from Drosophila melanogaster , Arabidopsis thaliana , Caenorhabditis elegans , Schizosaccharomyces pombe , S. cerevisiae, and many other diverse organisms. [5]

As of 2015, several structures have been solved for this class of enzymes, with PDB accession codes 1XDO, 1XDP, 2O8R, 3CZP, 3CZQ, 3RHF.

The Uncharacterized DUF202/YidH (YidH) Family

Members of the YidH Family are found in bacteria, archaea and eukaryotes. Members of this family include YidH of E. coli (TC# 9.B.51.1.1) which has 115 amino acyl residues and 3 TMSs of α-helical nature. [6] The first TMS has a low level of hydrophobicity, the second has a moderate level of hydrophobicity, and the third has very hydrophobic character. These traits appear to be characteristic of all members of this family. A representative list of proteins belonging to this family can be found in the Transporter Classification Database. In fungi, a long homologue of 351 aas has a similar 3 TMS DUF202 domain at its extreme C-terminus.

Related Research Articles

A polyphosphate is a salt or ester of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic ring structures. In biology, the polyphosphate esters ADP and ATP are involved in energy storage. A variety of polyphosphates find application in mineral sequestration in municipal waters, generally being present at 1 to 5 ppm. GTP, CTP, and UTP are also nucleotides important in the protein synthesis, lipid synthesis, and carbohydrate metabolism, respectively. Polyphosphates are also used as food additives, marked E452.

A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins; that is they exist permanently within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion or active transport. The two main types of proteins involved in such transport are broadly categorized as either channels or carriers. The solute carriers and atypical SLCs are secondary active or facilitative transporters in humans. Collectively membrane transporters and channels are known as the transportome. Transportomes govern cellular influx and efflux of not only ions and nutrients but drugs as well.

PEP group translocation, also known as the phosphotransferase system or PTS, is a distinct method used by bacteria for sugar uptake where the source of energy is from phosphoenolpyruvate (PEP). It is known to be a multicomponent system that always involves enzymes of the plasma membrane and those in the cytoplasm.

<span class="mw-page-title-main">ATP-binding cassette transporter</span> Gene family

The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.

<span class="mw-page-title-main">V-ATPase</span> Family of transport protein complexes

Vacuolar-type ATPase (V-ATPase) is a highly conserved evolutionarily ancient enzyme with remarkably diverse functions in eukaryotic organisms. V-ATPases acidify a wide array of intracellular organelles and pumps protons across the plasma membranes of numerous cell types. V-ATPases couple the energy of ATP hydrolysis to proton transport across intracellular and plasma membranes of eukaryotic cells. It is generally seen as the polar opposite of ATP synthase because ATP synthase is a proton channel that uses the energy from a proton gradient to produce ATP. V-ATPase however, is a proton pump that uses the energy from ATP hydrolysis to produce a proton gradient.

The sodium/phosphate cotransporter is a member of the phosphate:Na+ symporter (PNaS) family within the TOG Superfamily of transport proteins as specified in the Transporter Classification Database (TCDB).

<span class="mw-page-title-main">Mitochondrial carrier</span>

Mitochondrial carriers are proteins from solute carrier family 25 which transfer molecules across the membranes of the mitochondria. Mitochondrial carriers are also classified in the Transporter Classification Database. The Mitochondrial Carrier (MC) Superfamily has been expanded to include both the original Mitochondrial Carrier (MC) family and the Mitochondrial Inner/Outer Membrane Fusion (MMF) family.

Translocase is a general term for a protein that assists in moving another molecule, usually across a cell membrane. These enzymes catalyze the movement of ions or molecules across membranes or their separation within membranes. The reaction is designated as a transfer from “side 1” to “side 2” because the designations “in” and “out”, which had previously been used, can be ambiguous. Translocases are the most common secretion system in Gram positive bacteria.

<span class="mw-page-title-main">ADP-ribosylation</span> Addition of one or more ADP-ribose moieties to a protein.

ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis. Improper ADP-ribosylation has been implicated in some forms of cancer. It is also the basis for the toxicity of bacterial compounds such as cholera toxin, diphtheria toxin, and others.

Exopolyphosphatase (PPX) is a phosphatase enzyme which catalyzes the hydrolysis of inorganic polyphosphate, a linear molecule composed of up to 1000 or more monomers linked by phospho-anhydride bonds. PPX is a processive exophosphatase, which means that it begins at the ends of the polyphosphate chain and cleaves the phospho-anhydride bonds to release orthophosphate as it moves along the polyphosphate molecule. PPX has several characteristics which distinguish it from other known polyphosphatases, namely that it does not act on ATP, has a strong preference for long chain polyphosphate, and has a very low affinity for polyphosphate molecules with less than 15 phosphate monomers.

<span class="mw-page-title-main">P-type ATPase</span>

The P-type ATPases, also known as E1-E2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation (hence P) of a key conserved aspartate residue within the pump and their energy source, adenosine triphosphate (ATP). In addition, they all appear to interconvert between at least two different conformations, denoted by E1 and E2. P-type ATPases fall under the P-type ATPase (P-ATPase) Superfamily (TC# 3.A.3) which, as of early 2016, includes 20 different protein families.

<span class="mw-page-title-main">ATP synthase subunit C</span>

ATPase, subunit C of Fo/Vo complex is the main transmembrane subunit of V-type, A-type and F-type ATP synthases. Subunit C was found in the Fo or Vo complex of F- and V-ATPases, respectively. The subunits form an oligomeric c ring that make up the Fo/Vo/Ao rotor, where the actual number of subunits vary greatly among specific enzymes.

In enzymology, a thiamine-diphosphate kinase is an enzyme involved in thiamine metabolism. It catalyzes the chemical reaction

ABC transporter transmembrane domain is the main transmembrane structural unit of ATP-binding cassette transporter proteins, consisting of six alpha helixes that traverse the plasma membrane. Many members of the ABC transporter family have two such regions.

<span class="mw-page-title-main">ATP6V0B</span> Protein-coding gene in Homo sapiens

V-type proton ATPase 21 kDa proteolipid subunit is an enzyme that in humans is encoded by the ATP6V0B gene.

Obcells are hypothetical proto-organisms or the earliest form of life. The term was first proposed by Thomas Cavalier-Smith in 2001. According to Cavalier-Smith's theory for the origin of the first cell, two cup-shaped obcells or hemicells fused to make a protocell with double-lipid layer envelope, internal genome and ribosomes, protocytosol, and periplasm.

Phosphate permeases are membrane transport proteins that facilitate the diffusion of phosphate into and out of a cell or organelle. Some of these families include:

Members of the H+, Na+-translocating Pyrophosphatase (M+-PPase) Family (TC# 3.A.10) are found in the vacuolar (tonoplast) membranes of higher plants, algae, and protozoa, and in both bacteria and archaea. They are therefore ancient enzymes.

<span class="mw-page-title-main">Philip A. Rea</span> British biochemist, science writer and educator

Philip A. Rea is a British biochemist, science writer and educator, who is currently Professor of Biology and Rebecka and Arie Belldegrun Distinguished Director of the Vagelos Program in Life Sciences & Management at the University of Pennsylvania. His major contributions as a biochemist have been in the areas of membrane transport and xenobiotic detoxification, and as a science writer and educator in understanding the intersection between the life sciences and their implementation. In 2005, he and Mark V. Pauly founded the Roy and Diana Vagelos Program in Life Sciences & Management between the School of Arts and Sciences and Wharton School at the University of Pennsylvania, which he continues to co-direct in his capacity as Belldegrun Distinguished Director. Rea's work on serendipity in science has been featured in The Wall Street Journal. Additionally, he has served as a subject matter expert for 'The Scientist.

Sylvy Kornberg née Sylvia Ruth Levy (1917–1986) was an American biochemist who carried out research on DNA replication and polyphosphate synthesis. She discovered and characterized polyphosphate kinase (PPK), an enzyme that helps build long chains of phosphate groups called polyphosphate (PolyP) that play a variety of metabolic and regulatory functions. She worked closely with her husband and research partner, Arthur Kornberg, contributing greatly to the characterization of DNA polymerization that earned him the 1959 Nobel Prize in Physiology or Medicine.

References

  1. Brown MR, Kornberg A (June 2008). "The long and short of it - polyphosphate, PPK and bacterial survival". Trends Biochem. Sci. 33 (6): 284–90. doi:10.1016/j.tibs.2008.04.005. PMID   18487048.
  2. Docampo, Roberto; Moreno, Silvia N. J. (August 2011). "Acidocalcisomes". Cell Calcium. 50 (2): 111–119. doi:10.1016/j.ceca.2011.05.012. PMC   3156361 . PMID   21752464.
  3. Docampo, Roberto; et al. (2013). New insights into the roles of acidocalcisomes and the Contractile Vacuole Complex in osmoregulation in Protists. pp. 69–113. doi:10.1016/B978-0-12-407695-2.00002-0. ISBN   9780124076952. PMC   3818246 . PMID   23890380.{{cite book}}: |journal= ignored (help)
  4. 1 2 Gerasimaitė, R.; Sharma, S.; Desfougères, Y.; Schmidt, A.; Mayer, A. (October 2014). "Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity". J Cell Sci. 127 (23): 5093–104. doi: 10.1242/jcs.159772 . PMID   25315834.
  5. 1 2 3 Saier, Milton. "Transporter Classification Database: 4.E.1. The Vacuolar (Acidocalcisome) Polyphosphate Polymerase (V-PPP) Family". tcdb.org. Retrieved 26 December 2015.
  6. Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland (2014-12-11). "Intermolecular detergent-membrane protein NOEs for the characterization of the dynamics of membrane protein-detergent complexes". The Journal of Physical Chemistry B. 118 (49): 14288–14301. doi:10.1021/jp509137q. ISSN   1520-5207. PMID   25419869.

Further reading