| Names | |
|---|---|
|  Preferred IUPAC name  Octa-1,7-diene  | |
| Identifiers | |
3D model (JSmol)  | |
| ChEBI | |
| ChemSpider | |
| ECHA InfoCard | 100.020.959 | 
| EC Number | 
  | 
 PubChem CID  | |
| RTECS number | 
  | 
| UNII | |
| UN number | 2309 | 
 CompTox Dashboard (EPA)  | |
  | |
  | |
| Properties | |
| C8H14 | |
| Molar mass | 110.200 g·mol−1 | 
| Appearance | Colorless liquid | 
| Density | 0.746 g/mL at 25 °C | 
| Boiling point | 114–121 °C (237–250 °F; 387–394 K) | 
| Hazards | |
| GHS labelling: | |
|   | |
| Danger | |
| H225, H304, H410, H412 | |
| P210, P233, P240, P241, P242, P243, P280, P303+P361+P353, P370+P378, P403+P235, P501 | |
| Related compounds | |
|  Isoprene  Chloroprene  | |
Related compounds  | Butane | 
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).  | |
1,7-Octadiene is an organic compound with the formula (CH2=CHCH2CH2)2. It is a colorless liquid that serves as a precursor to specialty polymers. It arises commercially by the dimerization of butadiene in the presence of hydrogen. Some of the 1,6-octadiene is also formed. 1,7-Octadiene can be converted to the diol by hydroformylation followed by hydrogenation of the dialdehyde. In a related process, 1,7-Octadiene undergoes hydrocyanation to give dinitrile, which can be hydrogenated to give 1,10-diaminodecane. [1]
 Structurally related octadienes bearing two methyl groups are of commercial interest. Such compounds are produced by pyrolysis of pinane, which is abundantly available from terpentine or related wood-derived chemicals. [2]
 The diene has also been the subject of many research papers. For example, with ethylene it undergoes a cross-enyne metathesis Diels–Alder reaction. [3] It undergoes ring-closing metathesis to give cyclooctene. [4] Plasma polymerized 1,7-octadiene films deposited on silica can produce particles with tuned hydrophobicity. [5]