| |||
---|---|---|---|
+... |
1905 in science |
---|
Fields |
Technology |
Social sciences |
Paleontology |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
The year 1905 in science and technology involved some significant events, particularly in physics, listed below.
Wilhelm Carl Werner Otto Fritz Franz Wien was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.
The year 1915 involved numerous significant events in science and technology, some of which are listed below.
The year 1845 in science and technology involved some significant events, listed below.
Brownian motors are nanoscale or molecular machines that use chemical reactions to generate directed motion in space. The theory behind Brownian motors relies on the phenomenon of Brownian motion, random motion of particles suspended in a fluid resulting from their collision with the fast-moving molecules in the fluid.
Annalen der Physik is one of the oldest scientific journals on physics; it has been published since 1799. The journal publishes original, peer-reviewed papers on experimental, theoretical, applied, and mathematical physics and related areas. The editor-in-chief is Stefan Hildebrandt. Prior to 2008, its ISO 4 abbreviation was Ann. Phys. (Leipzig), after 2008 it became Ann. Phys. (Berl.).
Max Abraham was a German physicist known for his work on electromagnetism and his opposition to the theory of relativity.
The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.
Leo Graetz was a German physicist. He was born in Breslau, Germany, and was the son of historian Heinrich Graetz.
The annus mirabilis papers are the four that Albert Einstein published in the scientific journal Annalen der Physik in 1905. As major contributions to the foundation of modern physics, these scientific publications were the ones for which he gained fame among physicists. They revolutionized science's understanding of the fundamental concepts of space, time, mass, and energy. Because Einstein published all four of these papers in a single year, 1905 is called his annus mirabilis.
In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is
"Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" is the 1905 journal article, by Albert Einstein, that proved the reality of atoms, the modern understanding of which had been proposed in 1808 by John Dalton. It is one of the four groundbreaking papers Einstein published in 1905, in Annalen der Physik, in his miracle year.
The Kaufmann–Bucherer–Neumann experiments measured the dependence of the inertial mass of an object on its velocity. The historical importance of this series of experiments performed by various physicists between 1901 and 1915 is due to the results being used to test the predictions of special relativity. The developing precision and data analysis of these experiments and the resulting influence on theoretical physics during those years is still a topic of active historical discussion, since the early experimental results at first contradicted Einstein's then newly published theory (1905), but later versions of this experiment confirmed it. For modern experiments of that kind, see Tests of relativistic energy and momentum, for general information see Tests of special relativity.
Johann Georg von Soldner was a German physicist, mathematician and astronomer, first in Berlin and later in 1808 in Munich.
Kurd Friedrich Rudolf von Mosengeil, also Curd Friedrich Rudolf von Mosengeil, was a German physicist.
Jakob Johann Laub was a physicist from Austria-Hungary, who is best known for his work with Albert Einstein in the early period of special relativity.
Alfred Heinrich Bucherer was a German physicist, who is known for his experiments on relativistic mass. He also was the first who used the phrase "theory of relativity" for Einstein's theory of special relativity.
Vladimir Sergeyevitch Ignatowski, or Waldemar Sergius von Ignatowsky and similar names in other publications, was a Russian physicist.
In physics, a quantum is the minimum amount of any physical entity involved in an interaction. Quantum is a discrete quantity of energy proportional in magnitude to the frequency of the radiation it represents. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light of a specific frequency. Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact is part of the fundamental framework for understanding and describing nature.
Wilhelm Gottlieb Hankel was a German physicist who was among the first to identify pyroelectric effects and the rotation of the plane of optical polarization in fluorspar upon application of electricity.