Arabitol

Last updated
Arabitol [1]
Arabitol.png
Names
IUPAC name
D-Arabinitol [2]
Systematic IUPAC name
(2R,4R)-Pentane-1,2,3,4,5-pentol
Other names
(2R,4R)-Pentane-1,2,3,4,5-pentaol (not recommended)
Arabitol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.006.988 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C5H12O5/c6-1-3(8)5(10)4(9)2-7/h3-10H,1-2H2/t3-,4-/m1/s1 Yes check.svgY
    Key: HEBKCHPVOIAQTA-QWWZWVQMSA-N Yes check.svgY
  • InChI=1/C5H12O5/c6-1-3(8)5(10)4(9)2-7/h3-10H,1-2H2/t3-,4-/m1/s1
    Key: HEBKCHPVOIAQTA-QWWZWVQMBW
  • OC[C@@H](O)C(O)[C@H](O)CO
Properties
C5H12O5
Molar mass 152.146 g·mol−1
AppearancePrismatic crystals
Melting point 103 °C (217 °F; 376 K)
729 g/L [3]
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Arabitol, or arabinitol, is a sugar alcohol. It can be formed by the reduction of either arabinose. Some organic acid tests check for the presence of D-arabitol, which may indicate overgrowth of intestinal microbes such as Candida albicans or other yeast/fungus species. [4]

Contents

Arabitol and lyxitol are diastereomeric pentitols, differing in the configuration of two stereocenters. Arabitol was initially produced, soon after its discovery, through the catalytic reduction of D-arabinose or D-lixose [5] . It can be obtained in two spatial forms: L-arabitol and D-arabitol.

Production

Industrial production of arabitol has traditionally relied on chemical reduction of oxidized arabinose derivatives, including lactones, arabinonic acid and lixonic acid. These processes require high temperatures (around 100 °C) and expensive catalysts, and generally involve extensive purification of the feedstock prior to catalytic reduction. [6]

Biotechnological production routes have also been developed. [7] L-arabitol can be obtained by microbial fermentation using organisms capable of metabolizing L-arabinose, including Candida tropicalis , Pichia stipitis and Debaryomyces hansenii , as well as genetically engineered strains of Saccharomyces cerevisiae. Most reported studies have used batch cultivation with synthetic L-arabinose as substrate, although lignocellulosic hydrolysates such as sisal bagasse and soybean flour hydrolysates have also been evaluated. [8] [9]

References

  1. Merck Index, 11th Edition, 789
  2. "2-Carb-19".
  3. Arabitol at the Human Metabolome Database
  4. "Candida and Yeast Overgrowth". Archived from the original on 2010-03-02. Retrieved 2010-03-16.
  5. Hajny, G. J. (January 1964). "D-Arabitol Production by Endomycopsis chodati". Applied Microbiology. 12 (1): 87–92. doi:10.1128/am.12.1.87-92.1964. ISSN   0003-6919.
  6. Kumdam, Himabindu; Narayana Murthy, Shweta; Gummadi, Sathyanarayana N (2013-05-09). "Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters". AMB Express. 3 (1). doi:10.1186/2191-0855-3-23. ISSN   2191-0855.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. Kordowska-Wiater, M. (2015-04-08). "Production of arabitol by yeasts: current status and future prospects". Journal of Applied Microbiology. 119 (2): 303–314. doi:10.1111/jam.12807. ISSN   1364-5072.
  8. de Medeiros, Lorena Lucena; da Silva, Flávio Luiz Honorato; de Queiroz, Angela Lima Menêses; de Oliveira, Ysrael Simões Lins; de Souza Junior, Evanildo Francisco; Madruga, Marta Suely; da Conceição, Marta Maria (2020-07-28). "Structural-chemical characterization and potential of sisal bagasse for the production of polyols of industrial interest". Brazilian Journal of Chemical Engineering. 37 (3): 451–461. doi:10.1007/s43153-020-00049-3. ISSN   0104-6632.
  9. Garcia Sanchez, Rosa; Karhumaa, Kaisa; Fonseca, César; Sànchez Nogué, Violeta; Almeida, João RM; Larsson, Christer U; Bengtsson, Oskar; Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F (2010-06-15). "Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering". Biotechnology for Biofuels. 3 (1). doi:10.1186/1754-6834-3-13. ISSN   1754-6834.{{cite journal}}: CS1 maint: unflagged free DOI (link)

Further reading