Names | |
---|---|
Preferred IUPAC name Pentadecan-1-ol | |
Other names | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.010.099 |
EC Number |
|
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C15H32O | |
Molar mass | 228.420 g·mol−1 |
Appearance | White solid |
Density | 0.842 kg/L at 40 °C [3] |
Melting point | 41–44 °C (106–111 °F; 314–317 K) [1] |
Boiling point | 269–271 °C (516–520 °F; 542–544 K) [1] |
Hazards | |
GHS labelling: | |
Warning | |
H315, H319, H410, H411 | |
P264, P273, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362, P391, P501 | |
Flash point | 112 °C (234 °F; 385 K) closed cup |
Safety data sheet (SDS) | [4] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
1-Pentadecanol is an organic chemical compound classified as an alcohol. At room temperature, it is a white, flaky solid. [1] It is a saturated long-chain fatty alcohol consisting of a pentadecane chain with a hydroxy group as substituent on one end. It is an achiral molecule (meaning that it has no mirror-image isomers). [5]
Like other long-chain primary alcohols, it is used as an ingredient in industrial chemicals, lubricating oils, and consumer products such as lotions and creams. Additionally, it can be used as a feedstock for processes that use ethoxylation (adding ethylene oxide) and sulfation (adding a sulfo group) reactions to produce surfactants (primarily detergents). [6]
1-Pentadecanol is generally a stable compound. Like other long-chain primary alcohols, 1-pentadecanol exhibits low oral, skin and respiratory toxicity. [3] However, it may be slightly to moderately irritating to the eyes and skin, and prolonged contact with undiluted alcohols can lead to defatting of the skin. [3] Accordingly, Royal Dutch Shell recommends that eye protection, chemical-resistant gloves, and other protective clothing be worn when handling large amounts of 1-pentadecanol. [7] It floats on water, and can catch fire under certain conditions; in the case of a fire, carbon dioxide, foam, sand, earth, or dry chemical type fire extinguishers are recommended. [7]
In their product literature, Shell claims that high-chain primary alcohols (in the C9–C17 range) are "readily biodegradable and unlikely to bioaccumulate". [3] [7] They are not corrosive to carbon steel storage containers or process equipment, and are compatible with a variety of polymers; Shell recommends tetrafluoroethylene, high-density polyethylene, polypropylene and butyl rubber as gasketing materials. Ethylene propene-diene monomer (EPDM) rubber, however, cannot be used. [7]
Compared to other 1-alkanols (1-nonanol, 1-undecanol, and 1-tridecanol), 1-pentadecanol possesses lower solubility in supercritical carbon dioxide. This is consistent with a general trend of decreased solubility in alcohols with longer chains. [8]
When cooling from a liquid state, 1-pentadecanol (at 316.3 K, at standard pressure) assumes a crystalline structure known as the α-form, a "rotator phase" in which molecules can rotate about their long axes. While other long-chain alcohols, cooling further from the α-form, experience a solid-state transition into either a γ-form (with chains tilted to the basal plane normal) or a β-form (with vertical chains), 1-pentadecanol has been observed to exclusively assume the β-form when cooling, which it does at 311.5 K. Differential thermal analysis measurements on 1-pentadecanol were performed at temperatures from 300 to 370 K and pressures of up to 250 MPa; on heating, it was observed to change from a crystalline phase (β-form) to a rotator phase (α-form) a few degrees below its melting point. [9] The observation of this rotator state in pentadecanol was substantiated by dielectric measurements that confirmed its orientational disorder. No triple point exists for 1-pentadecanol. [9]
The alcohol was discovered in 1893 by Angelo Simonini, a student of Adolf Lieben at the University of Vienna, who used a variation of what's known as Hunsdiecker reaction (often called Simonini reaction) to get pentadecyl palmitate from silver palmitate and iodine at 100°C: [10]
2 C15H31COOAg + I2 → C15H31COOC15H31 + CO2 + 2 AgI
The Shell corporation uses a proprietary process for the synthesis of 1-pentadecanol (referring to it by the trade name Neodol 5) via hydroformylation of olefins produced from ethylene. [6]
Small amounts of 1-pentadecanol have been found (using thin-layer chromatography and GC/MS) to naturally occur in the leaves of Solena amplexicaulis (creeping cucumber). [11] In 2008, a synthesis of pachastrissamine (a cytotoxic lipid compound found in sea sponges [12] ) was described starting from 1-pentadecanol. [5]
Fungal oxidization and assimilation of pentadecane has been observed by two citric acid-producing Candida strains (wild type KSH 21 and mutant 337), transforming it into both pentadecanol and pentadecanoic acid through oxidization at one of the terminal carbon atoms. [13] The highest conversion to pentadecanol seen in the 1977 study was from a 3-day fermenter culture of the 337 strain, in which 85.5 mg was developed per 10 g of pentadecane. Some conversion to 2-pentadecanol and 2-pentadecanone was also observed. [13]
In a 1981 paper, the activities of various primary alcohols were evaluated as substrates for alkyl DHAP synthase's catalysis of fatty alcohol with acyl dihydroxyacetone phosphate in Erlich ascites tumor cells. The specificity of the cells' microsomal alkyl DHAP synthase with respect to different alcohols was investigated; pentadecanol had an activity of approximately 0.2 mol/min/mg protein. [14]
A 1994 study evaluated 1-pentadecanol as a potential anti-acne agent. While primary alcohols were known to be effective against Gram-positive bacteria, it was previously found that free fatty acids and alcohols between C8 and C14 were skin irritants. Since the effect had ended at C15, several longer-chain alcohols were evaluated for their activity against Propionibacterium acnes ; 1-pentadecanol was found to have a minimum inhibitory concentration (MIC) of 0.78 μg/mL and a minimum bactericidal concentration of 1.56 μg/mL. [15]
In a 1995 paper by the same research group, the 0.78 μg/mL MIC against P. acnes was replicated, and remained the lowest MIC against P. acnes among all primary alcohols tested (from C6 to C20). 1-Pentadecanol was, additionally, found to have a MIC of 6.25 μg/mL against Brevibacterium ammoniagenes , and a MIC greater than 800 μg/mL (essentially, no effect) against the dermatomycotic yeast Pityrosporum ovale . It, along with 1-hexadecanol, was found to be selectively antimicrobial against P. acnes and not other Gram-positive bacteria (unlike other alcohols, like 1-dodecanol, that were more broadly antimicrobial to all Gram-positive bacteria). [16]
A 2018 computational chemistry study investigated possible uses of alcohol compounds as mycobactericidal disinfectants for the control of Mycobacterium tuberculosis . The study computationally evaluated Gibbs free energy (∆G) for the molecular docking of alcohols C1 (methanol) to C15 (pentadecanol) as ligands of the InhA, MabA, and PanK receptors. The observed trend was that binding energy between ligand and receptor increased with chain length; pentadecanol, the longest alcohol tested, had a ∆G computationally estimated as −4.9 kcal/mol with InhA, −4.9 kcal/mol with MabA, and −5.5 kcal/mol with PanK. This was compared with triclosan (whose ∆G for those bindings is −6.4 kcal/mol, −6.7 kcal/mol and −7.0 kcal/mol respectively); pentadecanol was found to have "potency" as a mycobactericidal agent and suggested as a "reference" for further development of receptor-targeted mycobactericidal agents. [17]
The properties of fluorinated 1-pentadecanols have been investigated as potential amphiphilic species for aiding adsorption of the pulmonary surfactant dipalmitoylphosphatidylcholine (DPPC). DPPC, while contributing to film rigidity on the surface of alveoli, has poor adsorption and respreading qualities; highly fluorinated amphiphiles can compatibilize it to other surfaces, but at the cost of bioaccumulation both in the human body and in the environment. Therefore, the interaction of several partially fluorinated 1-pentadecanols with DPPC in a Langmuir monolayer was analyzed in a 2018 paper. The molecules were F4H11OH, F6H9OH, and F8H7OH; as the fluorination degree increased, so did hydrophobicity. [18]
In organic chemistry, an alkane, or paraffin, is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane, where n = 1, to arbitrarily large and complex molecules, like pentacontane or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane.
In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".
Methyl radical is an organic compound with the chemical formula CH•
3. It is a metastable colourless gas, which is mainly produced in situ as a precursor to other hydrocarbons in the petroleum cracking industry. It can act as either a strong oxidant or a strong reductant, and is quite corrosive to metals.
Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.
In organic chemistry, a carbanion is an anion in which carbon is negatively charged.
Fatty alcohols (or long-chain alcohols) are usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4–6 carbons to as many as 22–26, derived from natural fats and oils. The precise chain length varies with the source. Some commercially important fatty alcohols are lauryl, stearyl, and oleyl alcohols. They are colourless oily liquids (for smaller carbon numbers) or waxy solids, although impure samples may appear yellow. Fatty alcohols usually have an even number of carbon atoms and a single alcohol group (–OH) attached to the terminal carbon. Some are unsaturated and some are branched. They are widely used in industry. As with fatty acids, they are often referred to generically by the number of carbon atoms in the molecule, such as "a C12 alcohol", that is an alcohol having 12 carbons, for example dodecanol.
A 1,2-rearrangement or 1,2-migration or 1,2-shift or Whitmore 1,2-shift is an organic reaction where a substituent moves from one atom to another atom in a chemical compound. In a 1,2 shift the movement involves two adjacent atoms but moves over larger distances are possible. In the example below the substituent R moves from carbon atom C2 to C3.
Dichlorine heptoxide is the chemical compound with the formula Cl2O7. This chlorine oxide is the anhydride of perchloric acid. It is produced by the careful distillation of perchloric acid in the presence of the dehydrating agent phosphorus pentoxide:
Phosphorus triiodide (PI3) is an inorganic compound with the formula PI3. A red solid, it is too unstable to be stored for long periods of time; it is, nevertheless, commercially available. It is widely used in organic chemistry for converting alcohols to alkyl iodides and also serves as a powerful reducing agent.
In organic chemistry, terminal alkenes are a family of organic compounds which are alkenes with a chemical formula CxH2x, distinguished by having a double bond at the primary, alpha (α), or 1- position. This location of a double bond enhances the reactivity of the compound and makes it useful for a number of applications.
In organic chemistry, alkyl nitrites are a group of organic compounds based upon the molecular structure R−O−N=O, where R represents an alkyl group. Formally they are alkyl esters of nitrous acid. They are distinct from nitro compounds.
Diphenylmethane is an organic compound with the formula (C6H5)2CH2 (often abbreviated CH
2Ph
2). The compound consists of methane wherein two hydrogen atoms are replaced by two phenyl groups. It is a white solid.
Perchloryl fluoride is a reactive gas with the chemical formula ClO
3F. It has a characteristic sweet odor that resembles gasoline and kerosene. It is toxic and is a powerful oxidizing and fluorinating agent. It is the acid fluoride of perchloric acid.
Tetrafluorohydrazine or perfluorohydrazine, N2F4, is a colourless, nonflammable, reactive inorganic gas. It is a fluorinated analog of hydrazine.
The Barton reaction, also known as the Barton nitrite ester reaction, is a photochemical reaction that involves the photolysis of an alkyl nitrite to form a δ-nitroso alcohol.
Triethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name the compound has the formula Al2(C2H5)6 (abbreviated as Al2Et6 or TEA). This colorless liquid is pyrophoric. It is an industrially important compound, closely related to trimethylaluminium.
Anacardic acids are phenolic lipids, chemical compounds found in the shell of the cashew nut. An acid form of urushiol, they also cause an allergic skin rash on contact, known as urushiol-induced contact dermatitis. Anacardic acid is a yellow liquid. It is partially miscible with ethanol and ether, but nearly immiscible with water. Chemically, anacardic acid is a mixture of several closely related organic compounds. Each consists of a salicylic acid substituted with an alkyl chain that has 15 or 17 carbon atoms. The alkyl group may be saturated or unsaturated; anacardic acid is a mixture of saturated and unsaturated molecules. The exact mixture depends on the species of the plant. The 15-carbon unsaturated side chain compound found in the cashew plant is lethal to Gram-positive bacteria.
Perfluoroalkyl carboxylic acids (PFCAs), or perfluorocarboxylic acids are compounds of the formula CnF(2n+1)CO2H that belong to the class of per- and polyfluoroalkyl substances. The simplest example is trifluoroacetic acid. These compounds are organofluorine analogues of ordinary carboxylic acids, but they are stronger by several pKa units and they exhibit great hydrophobic character. Perfluoroalkyl dicarboxylic acids (PFdiCAs) are also known, e.g. C2F4(CO2H)2.
1-Dodecene is an alkene with the formula C10H21CH=CH2, consisting of a chain of twelve carbon atoms ending with a double bond. While there are many isomers of dodecene depending on which carbon the double bond is placed, this isomer is of greater commercial importance. It is classified as an alpha-olefin. Alpha-olefins are distinguished by having a double bond at the primary or alpha (α) position. This location of a double bond enhances the reactivity of the compound and makes it useful for a number of applications, especially for the production of detergents.
Radical fluorination is a type of fluorination reaction, complementary to nucleophilic and electrophilic approaches. It involves the reaction of an independently generated carbon-centered radical with an atomic fluorine source and yields an organofluorine compound.