1-Pentadecanol

Last updated

Contents

1-Pentadecanol
Pentadecanol.svg
1-Pentadecanol-spacefilling.png
Names
Preferred IUPAC name
Pentadecan-1-ol
Other names
Pentadecyl alcohol, [1] n-pentadecanol [2]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.010.099 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-107-9
PubChem CID
UNII
  • InChI=1S/C15H32O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16/h16H,2-15H2,1H3
    Key: REIUXOLGHVXAEO-UHFFFAOYSA-N
  • CCCCCCCCCCCCCCCO
Properties
C15H32O
Molar mass 228.420 g·mol−1
AppearanceWhite solid
Density 0.842 kg/L at 40 °C [3]
Melting point 41–44 °C (106–111 °F; 314–317 K) [1]
Boiling point 269–271 °C (516–520 °F; 542–544 K) [1]
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H315, H319, H410, H411
P264, P273, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362, P391, P501
Flash point 112 °C (234 °F; 385 K) closed cup
Safety data sheet (SDS) [4]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1-Pentadecanol is an organic chemical compound classified as an alcohol. At room temperature, it is a white, flaky solid. [1] It is a saturated long-chain fatty alcohol consisting of a pentadecane chain with a hydroxy group as substituent on one end. It is an achiral molecule (meaning that it has no mirror-image isomers). [5]

Like other long-chain primary alcohols, it is used as an ingredient in industrial chemicals, lubricating oils, and consumer products such as lotions and creams. Additionally, it can be used as a feedstock for processes that use ethoxylation (adding ethylene oxide) and sulfation (adding a sulfo group) reactions to produce surfactants (primarily detergents). [6]

Properties

1-Pentadecanol is generally a stable compound. Like other long-chain primary alcohols, 1-pentadecanol exhibits low oral, skin and respiratory toxicity. [3] However, it may be slightly to moderately irritating to the eyes and skin, and prolonged contact with undiluted alcohols can lead to defatting of the skin. [3] Accordingly, Royal Dutch Shell recommends that eye protection, chemical-resistant gloves, and other protective clothing be worn when handling large amounts of 1-pentadecanol. [7] It floats on water, and can catch fire under certain conditions; in the case of a fire, carbon dioxide, foam, sand, earth, or dry chemical type fire extinguishers are recommended. [7]

In their product literature, Shell claims that high-chain primary alcohols (in the C9–C17 range) are "readily biodegradable and unlikely to bioaccumulate". [3] [7] They are not corrosive to carbon steel storage containers or process equipment, and are compatible with a variety of polymers; Shell recommends tetrafluoroethylene, high-density polyethylene, polypropylene and butyl rubber as gasketing materials. Ethylene propene-diene monomer (EPDM) rubber, however, cannot be used. [7]

Compared to other 1-alkanols (1-nonanol, 1-undecanol, and 1-tridecanol), 1-pentadecanol possesses lower solubility in supercritical carbon dioxide. This is consistent with a general trend of decreased solubility in alcohols with longer chains. [8]

When cooling from a liquid state, 1-pentadecanol (at 316.3  K, at standard pressure) assumes a crystalline structure known as the α-form, a "rotator phase" in which molecules can rotate about their long axes. While other long-chain alcohols, cooling further from the α-form, experience a solid-state transition into either a γ-form (with chains tilted to the basal plane normal) or a β-form (with vertical chains), 1-pentadecanol has been observed to exclusively assume the β-form when cooling, which it does at 311.5 K. Differential thermal analysis measurements on 1-pentadecanol were performed at temperatures from 300 to 370 K and pressures of up to 250  MPa; on heating, it was observed to change from a crystalline phase (β-form) to a rotator phase (α-form) a few degrees below its melting point. [9] The observation of this rotator state in pentadecanol was substantiated by dielectric measurements that confirmed its orientational disorder. No triple point exists for 1-pentadecanol. [9]

Production

The Shell corporation uses a proprietary process for the synthesis of 1-pentadecanol (referring to it by the trade name Neodol 5) via hydroformylation of olefins produced from ethylene. [6]

Small amounts of 1-pentadecanol have been found (using thin-layer chromatography and GC/MS) to naturally occur in the leaves of Solena amplexicaulis (creeping cucumber). [10] In 2008, a synthesis of pachastrissamine (a cytotoxic lipid compound found in sea sponges [11] ) was described starting from 1-pentadecanol. [5]

Fungal oxidization and assimilation of pentadecane has been observed by two citric acid-producing Candida strains (wild type KSH 21 and mutant 337), transforming it into both pentadecanol and pentadecanoic acid through oxidization at one of the terminal carbon atoms. [12] The highest conversion to pentadecanol seen in the 1977 study was from a 3-day fermenter culture of the 337 strain, in which 85.5 mg was developed per 10 g of pentadecane. Some conversion to 2-pentadecanol and 2-pentadecanone was also observed. [12]

Applications

In a 1981 paper, the activities of various primary alcohols were evaluated as substrates for alkyl DHAP synthase's catalysis of fatty alcohol with acyl dihydroxyacetone phosphate in Erlich ascites tumor cells. The specificity of the cells' microsomal alkyl DHAP synthase with respect to different alcohols was investigated; pentadecanol had an activity of approximately 0.2 mol/min/mg protein. [13]

A 1994 study evaluated 1-pentadecanol as a potential anti-acne agent. While primary alcohols were known to be effective against Gram-positive bacteria, it was previously found that free fatty acids and alcohols between C8 and C14 were skin irritants. Since the effect had ended at C15, several longer-chain alcohols were evaluated for their activity against Propionibacterium acnes ; 1-pentadecanol was found to have a minimum inhibitory concentration (MIC) of 0.78  μg/mL and a minimum bactericidal concentration of 1.56 μg/mL. [14]

In a 1995 paper by the same research group, the 0.78 μg/mL MIC against P. acnes was replicated, and remained the lowest MIC against P. acnes among all primary alcohols tested (from C6 to C20). 1-Pentadecanol was, additionally, found to have a MIC of 6.25 μg/mL against Brevibacterium ammoniagenes , and a MIC greater than 800 μg/mL (essentially, no effect) against the dermatomycotic yeast Pityrosporum ovale . It, along with 1-hexadecanol, was found to be selectively antimicrobial against P. acnes and not other Gram-positive bacteria (unlike other alcohols, like 1-dodecanol, that were more broadly antimicrobial to all Gram-positive bacteria). [15]

A 2018 computational chemistry study investigated possible uses of alcohol compounds as mycobactericidal disinfectants for the control of Mycobacterium tuberculosis . The study computationally evaluated Gibbs free energy (∆G) for the molecular docking of alcohols C1 (methanol) to C15 (pentadecanol) as ligands of the InhA, MabA, and PanK receptors. The observed trend was that binding energy between ligand and receptor increased with chain length; pentadecanol, the longest alcohol tested, had a ∆G computationally estimated as −4.9 kcal/mol with InhA, −4.9 kcal/mol with MabA, and −5.5 kcal/mol with PanK. This was compared with triclosan (whose ∆G for those bindings is −6.4 kcal/mol, −6.7 kcal/mol and −7.0 kcal/mol respectively); pentadecanol was found to have "potency" as a mycobactericidal agent and suggested as a "reference" for further development of receptor-targeted mycobactericidal agents. [16]

The properties of fluorinated 1-pentadecanols have been investigated as potential amphiphilic species for aiding adsorption of the pulmonary surfactant dipalmitoylphosphatidylcholine (DPPC). DPPC, while contributing to film rigidity on the surface of alveoli, has poor adsorption and respreading qualities; highly fluorinated amphiphiles can compatibilize it to other surfaces, but at the cost of bioaccumulation both in the human body and in the environment. Therefore, the interaction of several partially fluorinated 1-pentadecanols with DPPC in a Langmuir monolayer was analyzed in a 2018 paper. The molecules were F4H11OH, F6H9OH, and F8H7OH; as the fluorination degree increased, so did hydrophobicity. [17]

Related Research Articles

<span class="mw-page-title-main">Alcohol (chemistry)</span> Organic compound with at least one hydroxyl (–OH) group

In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group bound to a saturated carbon atom. Alcohols range from the simple, like methanol and ethanol, to complex, like sucrose and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-loving) properties. The OH group provides a site at which many reactions can occur.

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Ethylene oxide</span> Cyclic compound (C2H4O)

Ethylene oxide is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.

A carbon–carbon bond is a covalent bond between two carbon atoms. The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp3-hybridized orbitals, but single bonds formed between carbon atoms with other hybridizations do occur. In fact, the carbon atoms in the single bond need not be of the same hybridization. Carbon atoms can also form double bonds in compounds called alkenes or triple bonds in compounds called alkynes. A double bond is formed with an sp2-hybridized orbital and a p-orbital that is not involved in the hybridization. A triple bond is formed with an sp-hybridized orbital and two p-orbitals from each atom. The use of the p-orbitals forms a pi bond.

In organic chemistry, a carbanion is an anion in which carbon is negatively charged.

In organic chemistry, ethoxylation is a chemical reaction in which ethylene oxide adds to a substrate. It is the most widely practiced alkoxylation, which involves the addition of epoxides to substrates.

Fatty alcohols (or long-chain alcohols) are usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4–6 carbons to as many as 22–26, derived from natural fats and oils. The precise chain length varies with the source. Some commercially important fatty alcohols are lauryl, stearyl, and oleyl alcohols. They are colourless oily liquids (for smaller carbon numbers) or waxy solids, although impure samples may appear yellow. Fatty alcohols usually have an even number of carbon atoms and a single alcohol group (–OH) attached to the terminal carbon. Some are unsaturated and some are branched. They are widely used in industry. As with fatty acids, they are often referred to generically by the number of carbon atoms in the molecule, such as "a C12 alcohol", that is an alcohol having 12 carbons, for example dodecanol.

<span class="mw-page-title-main">Dichlorine heptoxide</span> Chemical compound

Dichlorine heptoxide is the chemical compound with the formula Cl2O7. This chlorine oxide is the anhydride of perchloric acid. It is produced by the careful distillation of perchloric acid in the presence of the dehydrating agent phosphorus pentoxide:

Polyketones are a family of high-performance thermoplastic polymers. The polar ketone groups in the polymer backbone of these materials gives rise to a strong attraction between polymer chains, which increases the material's melting point (255 °C for copolymer, 220 °C for terpolymer. Trade names include Poketone, Carilon, Karilon, Akrotek, and Schulaketon. Such materials also tend to resist solvents and have good mechanical properties. Unlike many other engineering plastics, aliphatic polyketones such as Shell Chemicals' Carilon are relatively easy to synthesize and can be derived from inexpensive monomers. Carilon is made with a palladium catalyst from ethylene and carbon monoxide. A small fraction of the ethylene is generally replaced with propylene to reduce the melting point somewhat. Shell Chemical commercially launched Carilon thermoplastic polymer in the U.S. in 1996, but discontinued it in 2000. Hyosung announced that they would launch production in 2015.

<span class="mw-page-title-main">Straight-chain terminal alkene</span>

Straight-chain terminal alkenes, also called linear alpha olefins (LAO) or normal alpha olefins (NAO), are alkenes (olefins) having a chemical formula CnH2n, distinguished from other alkenes with a similar molecular formula by being terminal alkenes, in which the double bond occurs at the alpha position, and by having a linear (unbranched) hydrocarbon chain.

<span class="mw-page-title-main">Hyperconjugation</span> Concept in organic chemistry

In organic chemistry, hyperconjugation refers to the delocalization of electrons with the participation of bonds of primarily σ-character. Usually, hyperconjugation involves the interaction of the electrons in a sigma (σ) orbital with an adjacent unpopulated non-bonding p or antibonding σ* or π* orbitals to give a pair of extended molecular orbitals. However, sometimes, low-lying antibonding σ* orbitals may also interact with filled orbitals of lone pair character (n) in what is termed negative hyperconjugation. Increased electron delocalization associated with hyperconjugation increases the stability of the system. In particular, the new orbital with bonding character is stabilized, resulting in an overall stabilization of the molecule. Only electrons in bonds that are in the β position can have this sort of direct stabilizing effect — donating from a sigma bond on an atom to an orbital in another atom directly attached to it. However, extended versions of hyperconjugation can be important as well. The Baker–Nathan effect, sometimes used synonymously for hyperconjugation, is a specific application of it to certain chemical reactions or types of structures.

The Shell higher olefin process (SHOP) is a chemical process for the production of linear alpha olefins via ethylene oligomerization and olefin metathesis invented and exploited by Royal Dutch Shell. The olefin products are converted to fatty aldehydes and then to fatty alcohols, which are precursors plasticizers and detergents. The annual global production of olefines through this method is over one million tonnes.

<span class="mw-page-title-main">Diphenylmethane</span> Chemical compound

Diphenylmethane is an organic compound with the formula (C6H5)2CH2 (often abbreviated CH
2
Ph
2
). The compound consists of methane wherein two hydrogen atoms are replaced by two phenyl groups. It is a white solid.

Perchloryl fluoride is a reactive gas with the chemical formula ClO
3
F
. It has a characteristic sweet odor that resembles gasoline and kerosene. It is toxic and is a powerful oxidizing and fluorinating agent. It is the acid fluoride of perchloric acid.

The Barton reaction, also known as the Barton nitrite ester reaction, is a photochemical reaction that involves the photolysis of an alkyl nitrite to form a δ-nitroso alcohol.

<span class="mw-page-title-main">Anacardic acids</span> Chemical compound

Anacardic acids are phenolic lipids, chemical compounds found in the shell of the cashew nut. An acid form of urushiol, they also cause an allergic skin rash on contact, known as urushiol-induced contact dermatitis. Anacardic acid is a yellow liquid. It is partially miscible with ethanol and ether, but nearly immiscible with water. Chemically, anacardic acid is a mixture of several closely related organic compounds. Each consists of a salicylic acid substituted with an alkyl chain that has 15 or 17 carbon atoms. The alkyl group may be saturated or unsaturated; anacardic acid is a mixture of saturated and unsaturated molecules. The exact mixture depends on the species of the plant. The 15-carbon unsaturated side chain compound found in the cashew plant is lethal to Gram-positive bacteria.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

In organic chemistry, the Ziegler process is a method for producing fatty alcohols from ethylene using an organoaluminium compound. The reaction produces linear primary alcohols with an even numbered carbon chain. The process uses an aluminum compound to oligomerize ethylene and allow the resulting alkyl group to be oxygenated. The usually targeted products are fatty alcohols, which are otherwise derived from natural fats and oils. Fatty alcohols are used in food and chemical processing. They are useful due to their amphipathic nature. The synthesis route is named after Karl Ziegler, who described the process in 1955.

Radical fluorination is a type of fluorination reaction, complementary to nucleophilic and electrophilic approaches. It involves the reaction of an independently generated carbon-centered radical with an atomic fluorine source and yields an organofluorine compound.

References

  1. 1 2 3 4 Sigma Aldrich. "1-Pentadecanol". Archived from the original on 2019-08-24. Retrieved 2019-08-23.
  2. ChemSpider. "1-Pentadecanol". Archived from the original on 2019-08-24. Retrieved 2019-08-23.
  3. 1 2 3 4 "NEODOL 5 Technical Datasheet" (PDF). Shell Global. January 2021. Archived (PDF) from the original on 14 March 2021. Retrieved 8 March 2021.
  4. Sigma Aldrich. "MSDS - 412228". Archived from the original on 2020-09-01. Retrieved 2019-08-23.
  5. 1 2 Venkatesan, K.; Srinivasan, K. V. (2008), "A novel stereoselective synthesis of pachastrissamine (jaspine B) starting from 1-pentadecanol", Tetrahedron: Asymmetry, 19 (2): 209–215, doi:10.1016/j.tetasy.2007.12.001
  6. 1 2 Shell Global. "NEODOL Alcohols and Ethyxolates". Archived from the original on 2019-08-24. Retrieved 2019-08-23.
  7. 1 2 3 4 "Storage and handling of NEODOL alcohols" (PDF). Shell Global. June 2009. Archived (PDF) from the original on 24 August 2019. Retrieved 8 March 2021.
  8. Artal, Manuela; Pauchon, Veronique; Embid, José Muñoz; Jose, Jacques (1998), "Solubilities of 1-Nonanol, 1-Undecanol, 1-Tridecanol, and 1-Pentadecanol in Supercritical Carbon Dioxide at T = 323.15 K", Journal of Chemical & Engineering Data, American Chemical Society, 43 (6): 983–985, doi:10.1021/je980117r
  9. 1 2 Reuter, Jörg; Würflinger, Albert (October 1995). "Differential Thermal Analysis of Long-Chain n-Alcohols under High Pressure". Berichte der Bunsengesellschaft für physikalische Chemie. 99 (10): 1247–1251. doi:10.1002/bbpc.199500067.
  10. Barik, Anandamay; Azmi, Syed; Karmakar, Amarnath; Soumendranath, Chatterje (2018), "Antibacterial Activity of Long-Chain Primary Alcohols from 'Solena amplexicaulis' Leaves", Proceedings of the Zoological Society, Springer India, 71 (4): 313–319, doi:10.1007/s12595-017-0208-0, S2CID   14862566
  11. Cingolani, Francesca; Simbari, Fabio; Abad, Jose Luis; Casasampere, Mireia; Fabrias, Gemma; Futerman, Anthony H.; Casas, Josefina (2017). "Jaspine B induces non apoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase". Journal of Lipid Research. 58 (8): 1500–1513. doi: 10.1194/jlr.M072611 . PMC   5538274 . PMID   28572516. S2CID   4437822.
  12. 1 2 Souw, P.; Luftmann, H.; Rehm, H. J. (1977). "Oxidation of n-alkanes by citric acid producing Candida spp". European Journal of Applied Microbiology and Biotechnology. 3 (4): 289–301. doi:10.1007/BF01263329. S2CID   43536146.
  13. Davis, Paul A.; Hajra, Amiya K. (November 12, 1980). "Assay and Properties of the Enzyme Catalyzing the Biosynthesis of 1-O-Alkyl Dihydroxyacetone 3-Phosphate" (PDF). Archives of Biochemistry and Biophysics. 211 (1): 20–29. doi:10.1016/0003-9861(81)90424-0. hdl: 2027.42/24237 . PMID   7030211. Archived (PDF) from the original on 14 March 2021.
  14. Kubo, Isao; Muroi, Hisae; Kubo, Aya (January 1994). "Naturally Occurring Antiacne Agents". Journal of Natural Products. 57 (1): 9–17. doi:10.1021/np50103a002. PMID   8158169.
  15. Kubo, Isao; Muroi, Hisae; Kubo, Aya (July 1995). "Structural functions of antimicrobial long-chain alcohols and phenols". Bioorganic & Medicinal Chemistry. 3 (7): 873–880. doi:10.1016/0968-0896(95)00081-Q. PMID   7582963.
  16. Syahputra, Gita; Arwansyah, Wien Kusharyoto; Kusharyoto, Wien (2018). "Molecular Docking and Molecular Dynamics Study of Alcoholic Compounds as Mycobactericidal Agents Using InhA, MabA and PanK as Receptors". Annales Bogorienses. 22 (2): 101. doi: 10.14203/ann.bogor.2018.v22.n2.101-115 .
  17. Nakahara, Hiromichi; Shibata, Osamu (2018). "Miscibility of Semifluorinated Pentadecanol with DPPC at the Air−Water Interface" (PDF). Accounts of Materials & Surface Research. 3 (4): 199–208. Archived (PDF) from the original on 23 October 2020. Retrieved 8 March 2021.