Hanson Formation

Last updated
Hanson Formation
Stratigraphic range: Middle Sinemurian-Early Pliensbachian
~194.6–188.5  Ma
View of the Transantarctic Mountains.jpg
The Hanson Formation is located in the Transantarctic Mountains
Type Geological formation
Unit of Victoria Group
Sub-unitsThree informal members
UnderliesPrebble Formation
OverliesFalla Formation
Thickness237.5 m (779 ft)
Lithology
Primary Sandstone, tuffite
OtherClimbing-ripple lamination, horizontal lamination, and accumulations of clay-gall rip-up clasts
Location
Coordinates 84°18′S166°30′E / 84.3°S 166.5°E / -84.3; 166.5
Approximate paleocoordinates 57°30′S35°30′E / 57.5°S 35.5°E / -57.5; 35.5
Region Mount Kirkpatrick, Beardmore Glacier
CountryBlank flag.svg  Antarctica
Type section
Named forThe Hanson Spur
Named byDavid Elliot
Antarctica relief location map.jpg
Blue pog.svg
Hanson Formation (Antarctica)

The Hanson Formation (also known as the Shafer Peak Formation) is a geologic formation on Mount Kirkpatrick and north Victoria Land, Antarctica. It is one of the two major dinosaur-bearing rock groups found on Antarctica to date; the other is the Snow Hill Island Formation and related formations from the Late Cretaceous of the Antarctic Peninsula. The formation has yielded some Mesozoic specimens, but most of it is as yet unexcavated. Part of the Victoria Group of the Transantarctic Mountains, it lies below the Prebble Formation and above the Falla Formation. [2] The formation includes material from volcanic activity linked to the Karoo-Ferar eruptions of the Lower Jurassic. [3] [4] The climate of the zone was similar to that of modern southern Chile, humid, with a temperature interval of 17–18 degrees. [5] The Hanson Formation is correlated with the Section Peak Formation of the Eisenhower Range and Deep Freeze Range, as well as volcanic deposits on the Convoy Range and Ricker Hills of southern Victoria Land. [2] Recent work has successfully correlated the Upper Section Peak Formation, as well unnamed deposits in Convoy Range and Ricker Hills with the Lower Hanson, all likely of Sinemurian age and connected by layers of silicic ash, while the upper section has been found to be Pliensbachian, and correlated with a greater volcanic pulse, marked by massive ash inputs. [6] [7]

Contents

History

Map showing location of the Mount Kirkpatrick dinosaur site, with stratigraphic context of the Hanson Formation Mount Kirkpatrick dinosaur site.jpg
Map showing location of the Mount Kirkpatrick dinosaur site, with stratigraphic context of the Hanson Formation

The Victoria Group (also called Beacon Supergroup) from the Central Transantarctic Mountains was defined by Ferrar in 1907, when he described the "Beacon Sandstone" of the sedimentary rocks in the valleys of the Victoria Land. [8] Following this initial work, the term "Beacon System" was introduced for a series of similar sandstones and associated deposits that were recovered locally. [9] Later the "Beacon Sandstone Group" was assigned to those units in Victoria Land, with Harrington in 1965 proposing the name for different units that appear in the Beacon rocks of south Victoria Land, the beds below the Maya erosion surface, the Taylor Group and the Gondwana sequence, including the Victoria Group. [10] This work left out several older units, such as the Permian coal measures and glacial deposits. [10] It was not until 1963 that there was an establishment of the Gondwana sequence: the term Falla Formation was chosen to delimit a 2300 ft (700 m) series of lower quartz sandstone, a middle mica-carbon sandstone and an upper sandstone-shale unit. [11] The formation lying above the Falla Formation and below the Prebble Formation was then termed the Upper Falla Formation, with considerable uncertainty about its age (it was calculated from the presence of Glossopteris -bearing beds (Early Permian) and the assumed possibility that the rocks were older than Dicroidium -bearing beds, thought to be Late Triassic, in the Dominion Range). [12] Later works tried to set it between the Late Triassic (Carnian) and the Lower-Middle Jurassic (ToarcianAalenian). [13] The local Jurassic sandstones were included in the Victoria Group, with the Beacon unit defined as a supergroup in 1972, comprising beds overlying the pre-Devonian Kukri erosion surface to the Prebble Formation in the central Transantarctic Mountains and the Mawson Formation (and its unit, then separated, the Carapace Sandstone) in southern Victoria Land. [14] The Mawson Formation, identified at the beginning as indeterminate tillite, was later placed in the Ferrar Group. [15]

Extensive fieldwork later demonstrated the need for revisions to the post-Permian stratigraphy. [16] It was found that only 282 m of the upper 500 m of the Falla Formation as delimited in 1963 correspond to the sandstone/shale sequence, with the other 200 m comprising a volcaniclastic sequence. [16] New units were then described from this location: the Fremouw Formation and Prebble Formation, the latter term being introduced for a laharic unit, not seen in 1963, that occurs between the Falla Formation and the Kirkpatrick Basalt. [16] [17] A complete record was recovered at Mount Falla, revealing the sequence of events in the Transantarctic Mountains spanning the interval between the Upper Triassic Dicroidium-bearing beds and the Middle Jurassic tholeiitic lavas. [16] The upper part of the Falla Formation contains recognizable primary pyroclastic deposits, exemplified by resistant, laterally continuous silicic tuff beds, that led this to be considered a different formation, especially as it shows erosion associated with tectonic activity that preceded or accompanied the silicic volcanism and marked the onset of the development of a volcano-tectonic rift system. [2]

The Shafer Peak Formation was named from genetically identical deposits from north Victoria Land (exposed on Mt. Carson) in 2007 and correlated with the Hanson Formation, defined as tuffaceous deposits with silicic glass shards along with quartz and feldspar. [18] Later works, however, have equated it to a continuation of the Hanson Formation, as part of the upper member. [6]

The name "Hanson Formation" was proposed for the volcaniclastic sequence that was described in Barrett's 1969 Falla Formation essay. [16] The name was taken from the Hanson Spur, which lies immediately to the west of Mount Falla and is developed on the resistant tuff unit described below. [2]

Paleoenvironment

Environment reconstruction of the Hanson Formation with a Plinian eruption in the background Fire storm.jpg
Environment reconstruction of the Hanson Formation with a Plinian eruption in the background

The Hanson Formation accumulated in a rift environment located between c. 60 and 70S, fringing the East Antarctic Craton behind the active Panthalassan margin of southern Gondwana, being dominated by two types of facies: coarse- to medium-grained sandstone and tuffaceous rocks & minerals on the fluvial strata, which suggest the deposits where influenced by a large period of silicic volcanism, maybe more than 10 million years based on the thickness. [19] When looking at the composition of this tuffs, fine grain sizes, along others aspects such as bubble-wall and tricuspate shard form or crystal-poor nature trends to suggest this volcanic events developed as distal Plinian Eruptions (extremely explosive eruptions), with some concrete layers with mineral grains of bigger size showing that some sectors where more proximal to volcanic sources. [19] The distribution of some tuffs with accretionary lapilli, found scattered geographically and stratigraphically suggest transport by ephemeral river streams, as seen in the Oruanui Formation of New Zealand. [19] The sandstones where likely derived of low-sinuosity sandybraided stream deposits, having interbeds with multistory cross-bedded sandstone bodies, indicators of either side channels or crude splay deposits and concrete well-stratified sections representing overbank deposits and/or ash recycled by ephemeral streams or aeolian processes. [19] Towards the upper layers of the formation the influence of the Tuff in the sandstones get more notorious, evidenced by bigger proportions of volcanic minerals and ash-related materials embedded in between this layers. Overall, the unit deposition bear similarities to the several-hundredmetres-thick High Plains Cenozoic sequence of eastern Wyoming, Nebraska and South Dakota, with the fine-grained ash derived from distal volcanoes. [19]

The Shafer Peak section flora is the typical reported in warm climates. Compared with the underlying Triassic layers, warm and overall humid, possibly more strongly seasonal, specially notorious by the abundance of Cheirolepidiaceae pollen, a key thermophilic element. Yet the dominance of this pollen doesn't indicate proper dry conditions, as for example mudcrack and other indicators of strong dry seasons are mostly absent, while common presence of the invertebrate ichnogenus Planolites indicates the local fluvial, alluvial or lacustrine waters where likely continuous all year, as well the presence of abundant Otozamites trends to suggest high humidity. [20] Overall points to frost-free setting with strong seasonality in day-length given the high latitude, perhaps similar to warm-temperate, frost-free forest and open woodland as in North Island of New Zealand. Despite the proper conditions, peat accumulation was rare, mostly due to the influence of local volcanism, with common wildfire activity as show charred coalified plant remains. [20] At Mount Carson associations of sphenophyte rhizomes and aerial stems, as well isoetalean leaves suggest the presence of overbank deposits that were developed in ephemeral pools that lasted enough to be colonized by semiaquatic plants. [20]

Tectonically, based on the changes seen in the sandstone composition and the appearance of volcanic strata indicates the end of the so-called foreland depositional section in the Transantarctic Mountains, while appearance of arkoses with angular detritus and common Garnet points to local Palaeozoic basement uplift. [13] The Rift Valley deposition is recovered in several coeval and underlying points, with its thickness as indicator of palaeotopographical confinement of palaeoflows coming generally to the NW quadrant, creating a setting that received both sediment derived from the surrounding rift shoulders and ash from distal eruptions. [21] The Main fault indicator of this rift has been allocated around the Marsh Glacier, with the so-called Marsh Fault that breaks apart Precambrian rocks and the Miller Range, with other faults including a W-facing monocline that lies parallel and east of the Marsh Fault, a NW–SE-striking small graben in the southern Marshall Mountains, the fault at the Moore Mountains, the undescribed monocline facing east in the Dominion Range and an uplifted isolated fault in the west of Coalsack Bluff. [13] Marsh Fault was likely active during the early Jurassic, leading to a development of an extensive rift valley system several thousand kilometres long along which basaltic magmatism was focused later towards the Pliensbachian, when the Hanson Formation deposited, somehow similar to East African Rift Valleys and specially Waimangu Volcanic Rift Valley, with segmentation in the rift and possible latter reverse faulting. [19]

.

Fungi

Color key
Taxon Reclassified taxonTaxon falsely reported as presentDubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
GenusSpeciesLocationStratigraphic positionMaterialNotesImages

Fungi [22] [23]

Indeterminate

  • Mount Carson
  • Suture Bench

Middle Section

  • Fungal remains in microbial mats
  • Tylosis formation and fungi in wood
  • Type A represent Fungal remains linked to matrix microbial maths
  • Type B includes Parasitic Fungus of uncertain relationships, found associated with fossil wood allowing the formation of Tylosis

Paleofauna

The first dinosaur to be discovered from the Hanson Formation was the predator Cryolophosaurus , in 1991; it was formally described in 1994. Alongside these dinosaur remains were fossilized trees, suggesting that plant matter had once grown on Antarctica's surface before it drifted southward. Other finds from the formation include tritylodonts, herbivorous mammal-like reptiles and crow-sized pterosaurs. Surprising was the discovery of prosauropod remains, which were found commonly on other continents only until the Early Jurassic. However, the bone fragments found in the Hanson Formation were dated to the Middle Jurassic, millions of years later. In 2004, paleontologists discovered partial remains of a large sauropod dinosaur that has not yet been formally described.

Synapsida

TaxonSpeciesLocationMaterialNotesImages

Tritylodontidae [24] [25] [26] [27]

IndeterminateMt. Kirkpatrick

An isolated upper postcanine tooth, FMNH PR1824

A cynodont, incertae sedis within Tritylodontidae. It is believed to be related to the Asian genus Bienotheroides . [26] One of the largest member of the family. [26]

Tritylodon, example of Tritylodontidae cynodont Tritylodon BW.jpg
Tritylodon , example of Tritylodontidae cynodont

Pterosauria

TaxonSpeciesLocationMaterialNotesImages

Dimorphodontidae? [24] [28] [29]

IndeterminateMt. Kirkpatrick

Humerus

A pterosaur. Nearly the same size as YPM Dimorphodon . Its morphotype is common for basal pterosaurs, such as those in Preondactylus or Arcticodactylus .

Dimorphodon, an example of a dimorphodontid pterosaur Dimorphodon2DB.jpg
Dimorphodon , an example of a dimorphodontid pterosaur

Ornithischia

TaxonSpeciesLocationMaterialNotesImages

Ornithischia? [25] [30] [31] [32]

Indeterminate

Mt. Kirkpatrick

Dorsal vertebrae, femur and possible caudal vertebrae

A possible Ornithischian, described as a "four or five-foot ornithischian or bird-hipped dinosaur, is on its way back to the United States in about 5,000 pounds of rock." [31]

Eocursor, example of basal Ornithischian present close en Paleogeographical range Eocursor BW.jpg
Eocursor , example of basal Ornithischian present close en Paleogeographical range

Sauropodomorpha

TaxonSpeciesLocationMaterialNotesImages

Glacialisaurus [33] [34] [27]

Glacialisaurus hammeri

Mt. Kirkpatrick

FMNH PR1823, a partial right astragalus, medial and lateraldistal tarsals, and partial right metatarsus preserved in articulation with each other. A Distal left femur, FMNH PR1822, was referred

A Sauropodomorph, member of the family Massospondylidae. Related to Lufengosaurus of China. Was recently compared with Lamplughsaura . [35]

Glacialisaurus size comparison Glacialisaurus size.png
Glacialisaurus size comparison

Massopoda [32] [36]

Indeterminate

Mt. Kirkpatrick

Several vertebrae and Pelvic material

Was first exhibit at the Natural History Museum of Los Angeles County, where was compared to Leonerasaurus . [36] [35]

Inaccurate (quadrupedal) reconstruction of this species (left), along with Glacialisaurus (center) Glacialisaurus FMNH.jpg
Inaccurate (quadrupedal) reconstruction of this species (left), along with Glacialisaurus (center)

Massospondylidae [32] [36] [37]

Gen et sp. nov.

Mt. Kirkpatrick

FMNH PR 3051, nearly complete juvenile skeleton including partial skull

Possible member of Massospondylidae within Sauropodomorpha. Represents the only current Sauropodomorph with craneal material from the continent. Was originally compared to Leonerasaurus , yet latter was found to be related with Ignavusaurus and Sarahsaurus . [36] [35]

Ignavusaurus, a genus said to be closely related with this specimen Ignavusaurus Restoration.jpg
Ignavusaurus , a genus said to be closely related with this specimen

Sauropoda? [33] [38] [27] [39]

Indeterminate

Mt. Kirkpatrick

Three metre-wide pelvis, Ilium, isolated Vertebrae and Limb elements

A possible stem sauropod of some short ( Pulanesaura -grade?, Lessemsauridae?). The presence of Glacialisaurus in the Hanson Formation with advanced true sauropods shows that both basal and derived members of this lineage existed side by side in the early Jurassic. [33] [38] [34]

Ledumahadi, a genus often classified inside Sauropoda and close in Paleogeographical range Ledumahadi NT.jpg
Ledumahadi , a genus often classified inside Sauropoda and close in Paleogeographical range

Theropoda

TaxonSpeciesLocationMaterialNotesImages

Coelophysidae? [24] [40]

Indeterminate

Mt. Kirkpatrick

Maxilla fragment with 3 teeth

Described as "halticosaurid teeth"

Coelophysis, an example of a coelophysid Coelophysis bauriNV.jpg
Coelophysis , an example of a coelophysid

Cryolophosaurus [28] [41]

Cryolophosaurus ellioti

Mt. Kirkpatrick

  • FMNH PR1821: nearly complete skull and associated partial skeleton
  • Remains of a second specimen collected in 2010 [42]
  • Juvenile teeth [43]

Incertae sedis within Neotheropoda, probably related to the Averostra. Initially described as a possible basal tetanuran; subsequent studies have pointed out relationships with Dilophosaurus from North America. It is the best characterized dinosaur found in the formation, and was probably the largest predator on the ecosystem. [25]

Mounted skeleton of Cryolophosaurus Cryolophosaurus.jpg
Mounted skeleton of Cryolophosaurus

Neotheropoda [24] [40]

Indeterminate

Mt. Kirkpatrick

6 isolated teeth

Described as "dromeosaurid? teeth", it is probably either a Tachiraptor -grade averostra, a Coelophysis -like form, or possibly even a basal tetanuran

Arthropoda

At southwest Gair Mesa the basal layers represent a lake shore and are characterised by the noteworthy preservation of some arthropod remains. [44]

TaxonSpeciesLocationStratigraphic positionMaterialNotesImages

Blattodea [44]

Indeterminate

  • Southwest Gair Mesa

Middle Hanson Formation

Complete specimen

Indeterminate Cockroach material

Coleoptera [44]

Indeterminate (various)

  • Mount Carson
  • Shafer Peak

Lower Hanson Formation

Isolated elytron

Indeterminate beetle remains

Conchostraca [44]

Indeterminate (various)

  • Mount Carson
  • Shafer Peak
  • Suture Bench
  • Southwest Gair Mesa
Lower and Middle Hanson Formation

Isolated valves

Numerous conchostracan remains, found associated with lagoonar deposits and major indicators of water bodies locally along Scoyenia burrows

Diplichnites [44]

Diplichnites isp.

  • Mount Carson
  • Shafer Peak

Lower Hanson Formation

Trace fossils

Trace fossils in lacustrine environment, probably made by arthropods (arachnids or myriapods)

Diplichnites, Blackberry Hill, Wisconsin, Cambrian.JPG

Euestheria [45]

  • Euestheria juravariabalis
  • Mauger Nunatak

Lower and Middle Hanson Formation

Isolated valves

A clam shrimp (“conchostracan”), member of the family Lioestheriinae.

Lioestheria [45]

  • Lioestheria longacardinis
  • Lioestheria maugerensis
  • Mauger Nunatak

Lower and Middle Hanson Formation

Isolated valves

A clam shrimp (“conchostracan”), member of the family Lioestheriinae.

Ostracoda [44]

Indeterminate (various)

  • Southwest Gair Mesa

Middle Hanson Formation

Isolated valves

Numerous ostracodan remains, found associated with lagoonar deposits and indicators of water bodies locally along Scoyenia burrows and conchostracans

Palaeolimnadia [45]

  • Palaeolimnadia glenlee
  • Storm Peak
  • Mauger Nunatak

Lower and Middle Hanson Formation

Isolated valves

A clam shrimp (“conchostracan”), member of the family Limnadiidae.

Planolites [20]

Planolites isp.

  • Mount Carson
  • Shafer Peak
  • Suture Bench

Lower Hanson Formation

Burrows

Burrow fossils in lacustrine environment, probably made by arthropods. Common Planolites burrows on bedding planes document high water tables locally, as well humid atmospheric conditions

Planolites (34663777254).jpg

Scoyenia [44]

Scoyenia isp.

  • Mount Carson
  • Shafer Peak
  • Suture Bench

Lower Hanson Formation

Burrows

Burrow fossils in lacustrine environment, probably made by arthropods

Flora

Fossilized wood is also present in the Hanson Formation, near the stratigraphic level of the tritylodont locality. It has affinities with the Araucariaceae and similar kinds of conifers. [46] In the north Victoria Land region, plant remains occur at the base of the lacustrine beds directly underlying the initial pillow lavas at the top of the sedimentary profile. Some of the layers of Shafer Peak include remains of an in situ stand gymnosperm trees:

Palynology

Likely that (at least parts of) the palynomorph contents of these samples may derive from accessory clasts of underlying host strata that were incorporated and reworked during hydrovolcanic activity [47]

GenusSpeciesLocationStratigraphic positionMaterialNotes

Alisporites [48]

  • Alisporites grandis
  • Alisporites lowoodensis
  • Alisporites similis
  • Shafer Peak

Lower Hanson Formation

Pollen

Affinities with the families Caytoniaceae, Corystospermaceae, Peltaspermaceae, Umkomasiaceae and Voltziaceae

Aratrisporites [48]

  • Aratrisporites sp.
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with Pleuromeiales. The Plueromeiales were tall lycophytes (2 to 6 m) common in the Triassic. These spores probably reflect a relict genus.

Araucariacites [48]

  • Araucariacites australis
  • Shafer Peak

Lower Hanson Formation

Pollen

Affinities with the family Araucariaceae. By the Pliensbachian, Cheirolepidiaceae reduce their abundance, with coeval proliferation of the Araucariaceae-type pollen

Baculatisporites [48]

  • Baculatisporites comaumensis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the family Osmundaceae. Near fluvial current ferns, related to the modern Osmunda regalis.

Calamospora [48]

  • Calamospora tener
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the Calamitaceae. Horsetails, herbaceous flora characteristic of humid environments and tolerant of flooding.

Classopollis [7]

  • Classopollis cf. chateaunovi
  • Classopollis meyerianus
  • McLea Nunatak, Prince Albert Mountains

Lower Hanson Formation

Pollen

Affinities with the family Cheirolepidiaceae. Most samples yield well-preserved pollen and spore assemblages strongly dominated (82% and 85%, respectively, for the two species) by Classopollis grains. [7]

Corollina [48]

  • Corollina torosa
  • Corollina simplex
  • Shafer Peak

Lower Hanson Formation

Pollen

Affinities with the family Cheirolepidiaceae. The dominance of Corollina species is the defining feature of the Corollina torosa abundance zone.

Cyathidites [48]

  • Cyathidites australis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the family Cyatheaceae or Adiantaceae.

Cybotiumspora [48]

  • Cybotiumspora junta
  • Cybotiumspora jurienensis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the family Cibotiaceae.

Dejerseysporites [48]

  • Dejerseysporites verrucosus
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the Sphagnaceae. Sphagnum -type swamp mosses. Aquatic in temperate freshwater swamps.

Densoisporites [48]

  • Densoisporites psilatus
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the Selaginellaceae.

Dictyophyllitides [48]

  • Dictyophyllitides bassis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the family Schizaeaceae, Dicksoniaceae or Matoniaceae.

Neoraistrickia [48]

  • Neoraistrickia tavlorii
  • Neoraistrickia truncaia
  • Neoraistrickia suratensis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the Selaginellaceae.

Nevesisporites [7]

  • Nevesisporites vallatus
  • McLea Nunatak, Prince Albert Mountains
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with Bryophyta. Younger index taxa (e.g., N. vallatus) are mostly absent and the proportion of Classopollis is still very high. [7]

Perinopollenites [48]

  • Perinopollenites elatoides
  • Shafer Peak

Lower Hanson Formation

Pollen

Affinities with the family Cupressaceae.

Platysaccus [48]

  • Platysaccus queenslandii
  • Shafer Peak

Lower Hanson Formation

Pollen

Affinities with the families Caytoniaceae, Corystospermaceae, Podocarpaceae and Voltziaceae.

Podosporites [7]

  • Podosporites variabilis
  • McLea Nunatak, Prince Albert Mountains
  • Shafer Peak

Lower Hanson Formation

Pollen

Affinities with the family Podocarpaceae. Occasional bryophyte and lycophyte spores are found along with consistent occurrences of Podosporites variabilis. [7]

Polycingulatisporites [48]

  • Polycingulatisporites mooniensis
  • Polycingulatisporites triangularis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the family Notothyladaceae. Hornwort spores.

Puntactosporites [48]

  • Puntactosporites walkomi
  • Puntactosporites scabratus
  • Shafer Peak

Lower Hanson Formation

Spores

Uncertain peridophyte affinities

Retitriletes [7] [48]

  • Retitriletes semimuris
  • Retitriletes austroclavatidites
  • Retitriletes rosewoodensis
  • Retitriletes clavatoides
  • McLea Nunatak, Prince Albert Mountains

Lower Hanson Formation

Spores

Affinities with the family Lycopodiaceae. Absent in some samples. [7]

Rogalskaisporites [48]

  • Rogalskaisporites cicatricosus
  • Shafer Peak

Lower Hanson Formation

Spores

Uncertain peridophyte affinities

Rugulatisporites [48]

  • Rugulatisporites nelsonensis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the family Osmundaceae.

Sculptisporis [48]

  • Sculptisporis moretonensis
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the Sphagnaceae.

Stereisporites [48]

  • Stereisporites antiquasporites
  • Shafer Peak

Lower Hanson Formation

Spores

Affinities with the Sphagnaceae.

Trachysporites [48]

  • Trachysporites fuscus
  • Shafer Peak

Lower Hanson Formation

Spores

Uncertain peridophyte affinities

Thymosphora [48]

  • Thymosphora ipsviciensis
  • Shafer Peak

Lower Hanson Formation

Spores

Uncertain peridophyte affinities

Verrucosisporites [48]

  • Verrucosisporites varians
  • Shafer Peak

Lower Hanson Formation

Spores

Uncertain peridophyte affinities

Vitreisporites [48]

  • Vitreisporites signatus
  • Shafer Peak

Lower Hanson Formation

Pollen

Affinities with the family Caytoniaceae.

Macroflora

GenusSpeciesLocationStratigraphic positionMaterialNotesImages

Allocladus [20]

Indeterminate

Mount Carson

Lower and Middle Hanson Formation

Cuticles

A member of the Pinales of the family Cheirolepidiaceae or Araucariaceae.

Cladophlebis [49] [50]

Cladophlebis oblonga

Carapace Nunantak (reworked) Shafer Peak

Middle Hanson Formation

Leaves and stems

A Polypodiopsidan of the family Osmundaceae. Reworked from the Hanson Formation to the Mawson Formation; represents fern leaves common in humid environments.

Example of Cladophlebis specimen Cladophlebis asiatica IMG 5157 Beijing Museum of Natural History.jpg
Example of Cladophlebis specimen

Clathropteris [20] [51]

Clathropteris meniscoides

Shafer Peak Mount Carson

Lower and Middle Hanson Formation

Leaf segments

A Polypodiopsidan of the family Dipteridaceae. It was the first record of the genus and species from the Antarctica. Specimens from Shafer Peak occur in a tuffitic mass-flow deposit and are associated with abundant charred wood indicating wildfires. [51]

Example of Clathropteris specimen Clathropteris meniscioides.JPG
Example of Clathropteris specimen

Coniopteris [20]

Coniopteris murrayana

Coniopteris hymenophylloides

Mount Carson

Lower and Middle Hanson Formation

Pinna fragments

A Polypodiopsidan of the family Polypodiales. Common cosmopolitan Mesozoic fern genus. Recent research has reinterpreted it a stem group of the Polypodiales (Closely related with the extant genera Dennstaedtia , Lindsaea , and Odontosoria ). [52]

Cycadolepis [20]

Indeterminate

Mount Carson

Lower and Middle Hanson Formation

Trapeziform fragment of a scale leaf

A cycadophyte of the family Bennettitales. The Specimen was found pecimen associated with Otozamites spp.

Dicroidium [1]

Dicroidium sp.

Shafer Peak

Lower and Middle Hanson Formation

One cuticle fragment on slide

A Pteridosperm/Seed Fern of the family Corystospermaceae. Dicroidium plants only gradually began to disappear and lingered on in Jurassic floras as minor relictual elements in more modern vegetation communities dominated by conifers, Bennettitales, and various ferns. [1]

Example of Dicroidium specimen Dicroidium zuberi leaf.jpg
Example of Dicroidium specimen

Equisetites [20]

Indeterminate

Mount Carson

Lower and Middle Hanson Formation

Fragments of rhizomes, unbranched aerial shoots, isolated leaf sheaths and nodal diaphragms

A sphenophyte of the family Equisetaceae. Sphenophytes are common elements of Jurassic floras of southern Gondwana.

Example of Equisetites specimen Equisetites arenaceus 54645.jpg
Example of Equisetites specimen

Elatocladus [20]

Indeterminate

Mount Carson

Lower and Middle Hanson Formation

Cuticles

A member of the family Cupressaceae. Related to specimens found in the Middle Jurassic of Hope Bay, Graham Land. Probably belong to the Conifer Austrohamia from the Lower Jurassic of Argentina and China.

Isoetites [20]

Isoetites abundans

Mount Carson

Lower and Middle Hanson Formation

Stems

A lycophyte of the family Isoetaceae. Specimens resemble Australian ones of similar age.

Marchantites [49] [50]

Marchantites mawsonii

Carapace Nunantak (reworked)

Middle Hanson Formation

Thalli

A liverwort of the family Marchantiales. Reworked from the Hanson Formation to the Mawson Formation, this liverwort is related to modern humid-environment genera.

Example of extant relative of Marchantites, Marchantia Brunnenlebermoos Marchantia polymorpha.jpg
Example of extant relative of Marchantites , Marchantia

Matonidium [20]

cf. Matonidium goeppertii

Mount Carson

Lower and Middle Hanson Formation

Pinna portions

A Polypodiopsidan of the family Matoniaceae.

Example of Matonidium specimen EB1911 Palaeobotany - Matonidium Goepperti.jpg
Example of Matonidium specimen

Nothodacrium [49] [50] [53]

Nothodacrium warrenii

Carapace Nunantak (reworked)

Middle Hanson Formation

Leaves

A member of the family Voltziales. A genus with Resemblance with the extant Dacrydium that was referred to Podocarpaceae, yet a more recent work foun it to be just a convergently evolved relative of Telemachus . [53]

Otozamites [20]

Otozamites linearis

Otozamites sanctae-crucis

SW Gair Mesa

Mount Carson Shafer Peak

Lower and Middle Hanson Formation

Pinnately compound leaves

A cycadophyte of the family Bennettitales.

Example of Otozamites specimen Otozamites brevifolium.JPG
Example of Otozamites specimen

Pagiophyllum [49] [50] [20]

Indeterminate

Carapace Nunantak (reworked)

Mount Carson

Middle Hanson Formation

Leaves

Cuticles

A member of the Pinales of the family Araucariaceae. Reworked from the Hanson Formation to the Mawson Formation, representative of the presence of arboreal to arbustive flora.

Example of Pagiophyllum specimen Pagiophyllum rotzoanum raut.jpg
Example of Pagiophyllum specimen

Polyphacelus [51]

Polyphacelus stormensis

Mount Carson

Lower and Middle Hanson Formation

Leaf segments

A Polypodiopsidan of the family Dipteridaceae. Closely related to Clathropteris meniscoides.

Schizolepidopsis [20]

Indeterminate

Mount Carson

Lower and Middle Hanson Formation

Cone scales

A member of the Pinales of the family Pinaceae.

Spiropteris [20]

Indeterminate

Mount Carson

Lower and Middle Hanson Formation

Fragment of an up to 2 mm long coiledpteridophyll crozier

A Fern of Uncertain relationships. Spiropteris represents fossils of Coiled fern leaves

Zamites [20]

IndeterminateMount Carson

Lower and Middle Hanson Formation

Fragment of a large, pinnately compound leaf

A cycadophyte of the family Bennettitales.

Example of Zamites specimen Zamites feneonis 34.JPG
Example of Zamites specimen

See also

Related Research Articles

The Mesozoic Era is the second-to-last era of Earth's geological history, lasting from about 252 to 66 million years ago, comprising the Triassic, Jurassic and Cretaceous Periods. It is characterized by the dominance of gymnosperms and of archosaurian reptiles, such as the dinosaurs; a hot greenhouse climate; and the tectonic break-up of Pangaea. The Mesozoic is the middle of the three eras since complex life evolved: the Paleozoic, the Mesozoic, and the Cenozoic.

<span class="mw-page-title-main">Transantarctic Mountains</span> Mountain range in Antarctica

The Transantarctic Mountains comprise a mountain range of uplifted rock in Antarctica which extends, with some interruptions, across the continent from Cape Adare in northern Victoria Land to Coats Land. These mountains divide East Antarctica and West Antarctica. They include a number of separately named mountain groups, which are often again subdivided into smaller ranges.

Cryolophosaurus is a genus of large theropod dinosaur known from only a single species Cryolophosaurus ellioti, from the early Jurassic of Antarctica. It was one of the largest theropods of the Early Jurassic, with the subadult being estimated to have reached 6–7 metres (20–23 ft) long and weighed 350–465 kilograms (772–1,025 lb).

<span class="mw-page-title-main">Geology of Antarctica</span> Geologic composition of Antarctica

The geology of Antarctica covers the geological development of the continent through the Archean, Proterozoic and Phanerozoic eons.

The Newark Supergroup, also known as the Newark Group, is an assemblage of Upper Triassic and Lower Jurassic sedimentary and volcanic rocks which outcrop intermittently along the east coast of North America. They were deposited in a series of Triassic basins, the Eastern North American rift basins, approximately 220–190 million years ago. The basins are characterized as aborted rifts, with half-graben geometry, developing parallel to the main rift of the Atlantic Ocean which formed as North America began to separate from Africa. Exposures of the Newark Supergroup extend from South Carolina north to Nova Scotia. Related basins are also found underwater in the Bay of Fundy. The group is named for the city of Newark, New Jersey.

The Allan Hills are a group of hills at the end of the Transantarctic Mountains System, located in Oates Land and Victoria Land regions of Antarctica.

The Karoo and Ferrar Large Igneous Provinces (LIPs) are two large igneous provinces in Southern Africa and Antarctica respectively, collectively known as the Karoo-Ferrar, Gondwana, or Southeast African LIP, associated with the initial break-up of the Gondwana supercontinent at c.183Ma. Its flood basalt mostly covers South Africa and Antarctica but portions extend further into southern Africa and into South America, India, Australia and New Zealand.

<i>Glacialisaurus</i> Extinct genus of dinosaurs

Glacialisaurus is a genus of sauropodomorph dinosaur. It lived during the Pliensbachian stage of the Early Jurassic period around 186 to 182 million years ago in what is now the central region of the Transantarctic Mountains of Antarctica. It is known from two specimens; the holotype, a partial tarsus (ankle) and metatarsus, and a partial left femur. The fossils were collected by a team led by paleontologist William R. Hammer during a 1990–91 field expedition to the Hanson Formation of Antarctica. They were described in 2007, and made the basis of the new genus and species Glacialisaurus hammeri. The genus name translates as “icy” or "frozen lizard”, and the species name honors Hammer.

<span class="mw-page-title-main">Beacon Supergroup</span>

The Beacon Supergroup is a geological formation exposed in Antarctica and deposited from the Devonian to the Triassic. The unit was originally described as either a formation or sandstone, and upgraded to group and supergroup as time passed. It contains a sandy member known as the Beacon Heights Orthoquartzite.

<span class="mw-page-title-main">Stormberg Group</span> Triassic/Jurassic geological group in the Karoo Supergroup in South Africa

The Stormberg Group is one of the four geological groups that comprises the Karoo Supergroup in South Africa. It is the uppermost geological group representing the final phase of preserved sedimentation of the Karoo Basin. The Stormberg Group rocks are considered to range between Lower Triassic (Olenekian) to Lower Jurassic (Pliensbachian) in age. These estimates are based on means of geological dating including stratigraphic position, lithostratigraphic and biostratigraphic correlations, and palynological analyses.

<span class="mw-page-title-main">Cañadón Asfalto Formation</span>

The Cañadón Asfalto Formation is a geological formation from the Lower to Middle Jurassic. The Cañadón Asfalto Formation is located in the Cañadón Asfalto Basin, a rift basin in the Chubut Province of northwestern Patagonia, southern Argentina. The basin started forming in the earliest Jurassic.

Litothallus is a genus of non-marine thalloid organism found in overbank deposits from the Triassic of Antarctica. It looks a bit like Hildenbrandia, and was composed of up to 15 layers of non-mineralized cellular sheets.

Fremouw Peak is a prominent peak, 2,550 metres (8,370 ft) high, forming the south side of the mouth of Prebble Glacier, in the Queen Alexandra Range, Antarctica. It was named by the Advisory Committee on Antarctic Names for Edward J. Fremouw, a United States Antarctic Research Program aurora scientist at South Pole Station, 1959.

<span class="mw-page-title-main">East Antarctic Shield</span> Cratonic rock body which makes up most of the continent Antarctica

The East Antarctic Shield or Craton is a cratonic rock body that covers 10.2 million square kilometers or roughly 73% of the continent of Antarctica. The shield is almost entirely buried by the East Antarctic Ice Sheet that has an average thickness of 2200 meters but reaches up to 4700 meters in some locations. East Antarctica is separated from West Antarctica by the 100–300 kilometer wide Transantarctic Mountains, which span nearly 3,500 kilometers from the Weddell Sea to the Ross Sea. The East Antarctic Shield is then divided into an extensive central craton that occupies most of the continental interior and various other marginal cratons that are exposed along the coast.

The Chon Aike Formation is an extensive geological formation, present in the Deseado Massif in north-central Santa Cruz Province, Patagonia, Argentina. It covers an area of approximately 100,000 square kilometres (39,000 sq mi) and consists of rhyolitic volcanic rocks, particularly ignimbrites and lavas, with smaller amounts of agglomerates and tuffs. Within dacitic rocks, plant fossils have been found.

The Central Skåne Volcanic Province was a site of volcanic activity in the Scania region of Sweden during the Mesozoic Era of the Earth's geological history. The volcanism began with a first and main phase in late Sinemurian to Toarcian times around 191 to 178 Ma. Then volcanism continued sporadically for another 80 million years. More than one hundred volcanic necks of basaltic composition exist in Scania evidencing this volcanism. In central Scania, volcanism was in the form of a volcanic field of cinder cones that had Strombolian eruption styles. These cones produced tuffite deposits made largely of lapilli with rare volcanic bombs. Pyroclastic materials were subsequently palagonitized or largely altered to clay minerals. While eruptions occurred on land the sea was likely very close to the area. Besides purely pyroclastic sediments, lahar deposits have also been identified around the remnants of the volcanoes.

<span class="mw-page-title-main">Ross Embayment</span> Region of Antarctica

The Ross Embayment is a large region of Antarctica, comprising the Ross Ice Shelf and the Ross Sea, that lies between East and West Antarctica.

<span class="mw-page-title-main">Drakensberg Group</span> Jurassic geological group in Lesotho and South Africa

The Drakensberg Group is a geological group named after the Drakensberg mountain range where in its uppermost sections the rocks are found. The Drakensberg Group lies over most of Lesotho and localities in the Eastern Cape, KwaZulu-Natal, and Free State provinces of South Africa. It forms part of the greater Karoo Igneous Province, which occurs over an extensive area of southern Africa.

<span class="mw-page-title-main">Mawson Formation</span>

The Mawson Formation is a geological formation in Antarctica, dating to roughly between 182 and 177 million years ago and covering the Toarcian stages of the Jurassic Period in the Mesozoic Era. Vertebrate remains are known from the formation. The Mawson Formation is the South Victoria Land equivalent of the Karoo Large Igneous Province in South Africa, as well the Lonco Trapial Formation and the Cañadón Asfalto Formation of Argentina.

<span class="mw-page-title-main">Geology of the Ellsworth Mountains</span> Geology of the Ellsworth Mountains, Antarctica

The geology of the Ellsworth Mountains, Antarctica, is a rock record of continuous deposition that occurred from the Cambrian to the Permian periods, with basic igneous volcanism and uplift occurring during the Middle to Late Cambrian epochs, deformation occurring in the Late Permian period or early Mesozoic era, and glacier formation occurring in the Cretaceous period and Cenozoic era. The Ellsworth Mountains are located within West Antarctica at 79°S, 85°W. In general, it is made up of mostly rugged and angular peaks such as the Vinson Massif, the highest mountain in Antarctica.

References

  1. 1 2 3 Bomfleur, B.; Blomenkemper, P.; Kerp, H.; McLoughlin, S. (2018). "Polar regions of the Mesozoic–Paleogene greenhouse world as refugia for relict plant groups" (PDF). Transformative Paleobotany. 15 (1): 593–611. doi:10.1016/B978-0-12-813012-4.00024-3 . Retrieved 13 February 2022.
  2. 1 2 3 4 Elliot, D.H. (1996). "The Hanson Formation: a new stratigraphical unit in the Transantarctic Mountains, Antarctica". Antarctic Science. 8 (4): 389–394. Bibcode:1996AntSc...8..389E. doi:10.1017/S0954102096000569. S2CID   129124111 . Retrieved 15 November 2021.
  3. Ross, P.S.; White, J.D.L. (2006). "Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica". Journal of Volcanology and Geothermal Research. 149 (1): 62–84. Bibcode:2006JVGR..149...62R. doi:10.1016/j.jvolgeores.2005.06.007.
  4. Elliot, D. H.; Larsen, D. (1993). "Mesozoic volcanism in the Transantarctic Mountains: depositional environment and tectonic setting". Gondwana 8—Assembly, Evolution, and Dispersal. 1 (1): 379–410.
  5. Chandler, M. A.; Rind, D.; Ruedy, R. (1992). "Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate". Geological Society of America Bulletin. 104 (1): 543–559. Bibcode:1992GSAB..104..543C. doi:10.1130/0016-7606(1992)104<0543:PCDTEJ>2.3.CO;2.
  6. 1 2 Bomfleur, B.; Mörs, T.; Unverfärth, J.; Liu, F.; Läufer, A.; Castillo, P.; Crispini, L. (2021). "Uncharted Permian to Jurassic continental deposits in the far north of Victoria Land, East Antarctica". Journal of the Geological Society. 178 (1). Bibcode:2021JGSoc.178...62B. doi:10.1144/jgs2020-062. hdl: 11567/1020776 . S2CID   226380284 . Retrieved 15 November 2021.
  7. 1 2 3 4 5 6 7 8 9 Unverfärth, J.; Mörs, T.; Bomfleur, B. (2020). "Palynological evidence supporting widespread synchronicity of Early Jurassic silicic volcanism throughout the Transantarctic Basin". Antarctic Science. 32 (5): 396–397. Bibcode:2020AntSc..32..396U. doi: 10.1017/S0954102020000346 . S2CID   224858807.
  8. Ferrar, H.T. (1907). "Report on the field geology of the region explored during the 'Discovery' Antarctic Expedition 1901-1904". National Antarctic Expedition, Natural History. 1 (1): 1–100.
  9. Harrington, H.J. (1958). "Nomenclature of rock units in the Ross Sea region, Antarctica". Nature. 182 (1): 290. Bibcode:1958Natur.182..290H. doi: 10.1038/182290a0 . S2CID   4249714.
  10. 1 2 Harrington, H.J. (1965). "Geology and morphology of Antarctica". Ivan Oye, P. & van Mieohem, J, Eds. Biogeography and Ecology of Antarctica. Monographiae Biologicae. 15 (1): 1–71.
  11. Grindley, G.W. (1963). "The geology of the Queen Alexandra Range, Beardmore Glacier, Ross Dependency, Antarctica; with notes on the correlation of Gondwana sequences". New Zealand Journal of Geology and Geophysics. 6 (1–2): 307–347. doi: 10.1080/00288306.1963.10422067 .
  12. Barret, P.J. (1969). "Stratigraphy and petrology of the mainly fluviatile Permian and Triassic Beacon rocks, Beardmore Glacier area, Antarctica". Institute of Polar Studies, Ohio State University. 34 (2–3): 132.
  13. 1 2 3 Collinston, J.W.; Isbell, J.L.; Elliot, D.H.; Miller, M.F.; Miller, J.W.G. (1994). "Permian-TriassicTransantarctic basin". Memoir of the Geological Society of America. 184 (1): 173–222. doi:10.1130/MEM184-p173 . Retrieved 13 February 2022.
  14. Barret, P.J.; Elliot, D.H. (1972). "The early Mesozoic volcaniclastic Prebble Formation, Beardmore Glacier area". In ADIE, R.J., Ed.Antarctic Geology and Geophysics: 403–409.
  15. Ballance, P.F.; Watters, W.A. (1971). "The Mawson Diamictite and the Carapace Sandstone, formations of the Ferrar Group at Allan Hills and Carapace Nunatak, Victoria Land, Antarctica". New Zealand Journal of Geology and Geophysics. 14 (1): 512–527. doi: 10.1080/00288306.1971.10421945 . Retrieved 13 February 2022.
  16. 1 2 3 4 5 Barret, P.J.; Elliot, D.H.; Lindsay, J.F. (1986). "The Beacon Supergroup (Devonian-Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier area, Antarctica". Antarctic Research Series. 36 (1): 339–428. doi:10.1029/AR036p0339.
  17. Barret, P.J.; Elliot, D.H. (1973). "Reconnaissance Geologic Map of the Buckley Island Quadrangle, Transantarctic Mountains, Antarctica". US Geological Survey, Antarctica. 1 (1): 1–42. Retrieved 15 November 2021.
  18. Schöner, R.; Viereck-Goette, L.; Schneider, J.; Bomfleur, B. (2007). "Triassic-Jurassic sediments and multiple volcanic events in North Victoria Land, Antarctica: A revised stratigraphic model". In Antarctica: A Keystone in a Changing World–Online Proceedings of the 10th ISAES, Edited by AK Cooper and CR Raymond et Al., USGS Open-File Report. Open-File Report. 1047 (1): 1–5. doi:10.3133/ofr20071047SRP102.
  19. 1 2 3 4 5 6 Elliot, D. H.; Larsen, D.; Fanning, C. M.; Fleming, T. H.; Vervoort, J. D. (2017). "The Lower Jurassic Hanson Formation of the Transantarctic Mountains: implications for the Antarctic sector of the Gondwana plate margin" (PDF). Geological Magazine. 154 (4): 777–803. Bibcode:2017GeoM..154..777E. doi:10.1017/S0016756816000388. S2CID   132900754 . Retrieved 7 March 2022.
  20. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Bomfleur, B.; Pott, C.; Kerp, H. (2011). "Plant assemblages from the Shafer Peak Formation (Lower Jurassic), north Victoria Land, Transantarctic Mountains". Antarctic Science. 23 (2): 188–208. Bibcode:2011AntSc..23..188B. doi: 10.1017/S0954102010000866 . S2CID   130084588.
  21. Elliot, D. H. (2000). "Stratigraphy of Jurassic pyroclastic rocks in the Transantarctic Mountains". Journal of African Earth Sciences. 31 (1): 77–89. Bibcode:2000JAfES..31...77E. doi:10.1016/S0899-5362(00)00074-9 . Retrieved 7 March 2022.
  22. Harper, C. J. (2015). "The diversity and interactions of fungi from the Paleozoic and Mesozoic of Antarctica". (Doctoral Dissertation, University of Kansas).
  23. Harper, C. J.; Taylor, T. N.; Krings, M.; Taylor, E. L. (2016). "Structurally preserved fungi from Antarctica: diversity and interactions in late Palaeozoic and Mesozoic polar forest ecosystems" (PDF). Antarctic Science. 28 (3): 153–173. Bibcode:2016AntSc..28..153H. doi:10.1017/S0954102016000018. hdl:2262/96278. S2CID   54753268.
  24. 1 2 3 4 Hammer, W.R.; Hickerson, W.J.; Slaughter, R.W. (1994). "A dinosaur assemblage from the Transantarctic Mountains" (PDF). Antarctic Journal of the United States. 29 (5): 31–32.
  25. 1 2 3 Weishampel, David B; et al. (2004). "Dinosaur distribution (Early Jurassic, Asia)." In: Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. p.537. ISBN   0-520-24209-2.
  26. 1 2 3 Hammer, W.R.; Smith, N.D. (2008). "A tritylodont postcanine from the Hanson Formation of Antarctica". Journal of Vertebrate Paleontology. 28 (1): 269–273. doi:10.1671/0272-4634(2008)28[269:ATPFTH]2.0.CO;2. S2CID   130101582 . Retrieved 15 November 2021.
  27. 1 2 3 Stilwell, Jeffrey; Long, John (2011). Frozen in Time –prehistoric life of Antarctica (1 ed.). Melbourne, Australia: CSIRO Publishing. pp. 1–200. Retrieved 15 November 2021.
  28. 1 2 Hammer, W. R.; Hickerson, W. J. (1996). "Implications of an Early Jurassic vertebrate fauna from Antarctica". The Continental Jurassic. Museum of Northern Arizona Bulletin. 60 (1): 215–218.
  29. Brian, Andres (2013). "The First Pterosaur from Antarctica" (PDF). SVP 2013 Program and Abstracts. 73 (1): 77. Retrieved 26 October 2023.
  30. Niiler, E. "Primitive Dinosaur Found in Antarctic Mountains". nbcnews. Retrieved 15 November 2021.
  31. 1 2 College, Augustana. "Hammer adds another new dinosaur to his collection". Augustana College. Retrieved 15 November 2021.
  32. 1 2 3 Museum, Field (June 2011). "Surprising Discoveries - Antarctica Video Report #12". Vimeo. Retrieved 15 November 2021.
  33. 1 2 3 Smith, Nathan D.; Pol, Diego (2007). "Anatomy of a basal sauropodomorph dinosaur from the Early Jurassic Hanson Formation of Antarctica" (PDF). Acta Palaeontologica Polonica. 52 (4): 657–674.
  34. 1 2 Smith, N. D.; Makovicky, P. J.; Pol, D.; Hammer, W. R.; Currie, P. J. (2007). "The Dinosaurs of the Early Jurassic Hanson Formation of the Central Transantarctic Mountains: Phylogenetic Review and Synthesis" (PDF). U.S. Geological Survey and the National Academies. 2007 (1047srp003): 5 pp. doi:10.3133/of2007-1047.srp003.
  35. 1 2 3 NHM. "Antarctic Dinosaurs, Discover new species of dinosaurs as you follow in the steps of Antarctic adventurer-scientists". Natural History Museum of Los Angeles. Retrieved 15 November 2021.
  36. 1 2 3 4 Smith, Nathan D. (2013). "New Dinosaurs from the Early Jurassic Hanson Formation of Antarctica, and Patters of Diversity and Biogeography in Early Jurassic Sauropodomorphs". Geological Society of America Abstracts with Programs. 45 (7): 897.
  37. Jackson, Lynnea; Nathan, Smith; Makovicky, Peter (2022). "Cranial Description Of A New Basal Sauropodomorph From The Early Jurassic Of Antarctica" (PDF). SVP Abstracts. 83 (1): 196. Retrieved 26 July 2023.
  38. 1 2 Pickrell, John (2004). "Two New Dinosaurs Discovered in Antarctica". National Geographic. Archived from the original on March 11, 2004. Retrieved 20 December 2013.
  39. Joyce, C. "Digging for dinosaurs in Antarctica: Giant bones suggest icy continent had warmer past". NPR.org. Retrieved 15 November 2021.
  40. 1 2 Ford, T. "Small theropods". Dinosaur Mailing List. Cleveland Museum of Natural History. Retrieved 15 November 2021.
  41. Hammersue, William R.; Hickerson, William J. (1994). "A Crested Theropod Dinosaur from Antarctica". Science. 264 (5160): 828–830. Bibcode:1994Sci...264..828H. doi:10.1126/science.264.5160.828. PMID   17794724. S2CID   38933265 . Retrieved 15 November 2021.
  42. "New Information on the Theropod Dinosaur Cryolophosaurus Ellioti from the Early Jurassic Hanson Formation Of The Central Transantarctic Mountains". SVP Conference Abstracts 2017: 196. 2017.
  43. Smith, N.D; Makovicky, P.J.; Hammer, W.R.; Currie, P.J. (2007). "Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution". Zoological Journal of the Linnean Society. 151 (2): 377–421. doi: 10.1111/j.1096-3642.2007.00325.x .
  44. 1 2 3 4 5 6 7 8 9 Bomfleur, B.; Schneider, J. W.; Schöner, R.; Viereck-Götte, L.; Kerp, H. (2011). "Fossil sites in the continental Victoria and Ferrar groups (Triassic-Jurassic) of north Victoria Land, Antarctica". Polarforschung. 80 (2): 88–99. Retrieved 15 November 2021.
  45. 1 2 3 Tasch, P. (1984). "Biostratigraphy and palaeontology of some conchostracan-bearing beds in southern Africa". Palaeontologia Africana. 25 (1): 61–85. Retrieved 8 March 2022.
  46. Gair, H. S.; Norris, G.; Ricker, J. (1965). "Early mesozoic microfloras from Antarctica". New Zealand Journal of Geology and Geophysics. 8 (2): 231–235. doi: 10.1080/00288306.1965.10428109 .
  47. Bomfleur, B.; Schöner, R.; Schneider, J. W.; Viereck, L.; Kerp, H.; McKellar, J. L. (2014). "From the Transantarctic Basin to the Ferrar Large Igneous Province—new palynostratigraphic age constraints for Triassic–Jurassic sedimentation and magmatism in East Antarctica". Review of Palaeobotany and Palynology. 207 (1): 18–37. doi:10.1016/j.revpalbo.2014.04.002 . Retrieved 20 February 2022.
  48. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Musumeci, G.; Pertusati, P. C.; Ribecai, C.; Meccheri, M. (2006). "Early Jurassic fossiliferous black shales in the Exposure Hill Formation, Ferrar Group of northern Victoria Land, Antarctica". Terra Antartica Reports. 12 (1): 91–98. Retrieved 17 November 2021.
  49. 1 2 3 4 Cantrill, D. J.; Hunter, M. A. (2005). "Macrofossil floras of the Latady Basin, Antarctic Peninsula". New Zealand Journal of Geology and Geophysics. 48 (3): 537–553. doi:10.1080/00288306.2005.9515132. S2CID   129854482 . Retrieved 15 November 2021.
  50. 1 2 3 4 Cantrill, D. J.; Poole, I. (2012). "The vegetation of Antarctica through geological time". Cambridge University Press. 1 (1): 1–340. doi:10.1017/CBO9781139024990. ISBN   9781139024990 . Retrieved 15 November 2021.
  51. 1 2 3 Bomfleur, B.; Kerp, H. (2010). "The first record of the dipterid fern leaf Clathropteris Brongniart from Antarctica and its relation to Polyphacelus stormensis Yao, Taylor et Taylor nov. emend". Review of Palaeobotany and Palynology. 160 (3–4): 143–153. doi:10.1016/j.revpalbo.2010.02.003 . Retrieved 15 November 2021.
  52. Li, Chunxiang; Miao, Xinyuan; Zhang, Li-Bing; Ma, Junye; Hao, Jiasheng (January 2020). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research. 105: 104–136. doi:10.1016/j.cretres.2019.04.007. S2CID   146355798.
  53. 1 2 Andruchow-Colombo, Ana; Escapa, Ignacio H; Aagesen, Lone; Matsunaga, Kelly K S (2023). "In search of lost time: tracing the fossil diversity of Podocarpaceae through the ages". Botanical Journal of the Linnean Society. 27 (1). doi:10.1093/botlinnean/boad027/7237351 . Retrieved 6 August 2023.