IgA specific serine endopeptidase

Last updated
IgA-specific serine endopeptidase
Identifiers
EC no. 3.4.21.72
CAS no. 55127-02-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

IgA protease (EC 3.4.21.72, IgA-specific serine endopeptidase, IgA proteinase, IgA-specific proteinase, immunoglobulin A protease, immunoglobulin A proteinase) is an enzyme. [1] [2] This enzyme catalyses the following chemical reaction [reaction equation needed]

Contents

It performs cleavage of human immunoglobulin A subclass 1 (IgA1) molecules in the heavy chain hinge region but does not cleave IgA2. No small molecule substrates are known.

This enzyme is secreted by Gram-negative bacteria Neisseria gonorrhoeae , Neisseria meningitidis , Haemophilus influenzae , and Gram-positive Streptococcus pneumoniae .

The action of IgA protease allows the above mentioned bacteria to adhere to mucous membranes.

An IgA protease is a highly specific 106kDa enzyme that cleaves amino acid sequences of certain proteins. The natural substrate of IgA proteases is immunoglobulin A, hence its name. The enzyme is in fact capable of cleavage of proteins with the amino acid sequence Cleaves N-X-Z-Pro-Pro/-Y-Pro-C, where the X in the sequence preferably is a Proline or Serine; the Y = Threonine, Serine or Alanine; and Z preferably is Arginine or Threonine. Because of the sequence that the enzyme is able to cleave, it is also called IgAse Pro-Pro-Y-Pro. Thus, the IgA protease act by cleaving the proline-rich hinge region of the heavy chain of IgA1. Three major bacteria, Neisseria meningitidis , Streptococcus pneumoniae , and Haemophilus influenzae type B, release the IgA protease which destroys IgA. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Proteolysis</span> Breakdown of proteins into smaller polypeptides or amino acids

Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion.

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Immunoglobulin A</span> Antibody that plays a crucial role in the immune function of mucous membranes

Immunoglobulin A is an antibody that plays a role in the immune function of mucous membranes. The amount of IgA produced in association with mucosal membranes is greater than all other types of antibody combined. In absolute terms, between three and five grams are secreted into the intestinal lumen each day. This represents up to 15% of total immunoglobulins produced throughout the body.

<span class="mw-page-title-main">Elastase</span> Enzyme

In molecular biology, elastase is an enzyme from the class of proteases (peptidases) that break down proteins. In particular, it is a serine protease.

<span class="mw-page-title-main">Metalloproteinase</span> Type of enzyme

A metalloproteinase, or metalloprotease, is any protease enzyme whose catalytic mechanism involves a metal. An example is ADAM12 which plays a significant role in the fusion of muscle cells during embryo development, in a process known as myogenesis.

<span class="mw-page-title-main">Bacterial capsule</span> Polysaccharide layer that lies outside the cell envelope in many bacteria

The bacterial capsule is a large structure common to many bacteria. It is a polysaccharide layer that lies outside the cell envelope, and is thus deemed part of the outer envelope of a bacterial cell. It is a well-organized layer, not easily washed off, and it can be the cause of various diseases.

<i>Neisseria meningitidis</i> Species of bacterium that can cause meningitis

Neisseria meningitidis, often referred to as the meningococcus, is a Gram-negative bacterium that can cause meningitis and other forms of meningococcal disease such as meningococcemia, a life-threatening sepsis. The bacterium is referred to as a coccus because it is round, and more specifically a diplococcus because of its tendency to form pairs.

<span class="mw-page-title-main">Cysteine protease</span> Class of enzymes

Cysteine proteases, also known as thiol proteases, are hydrolase enzymes that degrade proteins. These proteases share a common catalytic mechanism that involves a nucleophilic cysteine thiol in a catalytic triad or dyad.

<span class="mw-page-title-main">Aspartic protease</span>

Aspartic proteases are a catalytic type of protease enzymes that use an activated water molecule bound to one or more aspartate residues for catalysis of their peptide substrates. In general, they have two highly conserved aspartates in the active site and are optimally active at acidic pH. Nearly all known aspartyl proteases are inhibited by pepstatin.

<span class="mw-page-title-main">Cefodizime</span> Chemical compound

Cefodizime is a 3rd generation cephalosporin antibiotic with broad spectrum activity against aerobic gram positive and gram negative bacteria. Clinically, it has been shown to be effective against upper and lower respiratory tract infections, urinary tract infections, and gonorrhea. Cefodizime is a bactericidal antibiotic that targets penicillin-binding proteins (PBPs) 1A/B, 2, and 3 resulting in the eventual death of the bacterial cell. In vivo experimental models of infection showed that bacterial clearance by this drug is at least as effective compared with other 3rd generation cephalosporins. It has similar adverse effect profile to other 3rd generation cephalosporins as well, mainly being limited to gastrointestinal or dermatological side effects.

Alpha-lytic endopeptidase or Alpha-lytic protease is an enzyme isolated from the myxobacterium Lysobacter enzymogenes. This enzyme is a serine protease that catalyses the breakage of peptide bonds using a hydrolysis chemical reaction. Alpha-lytic protease was named based on the observed cleavage specificity for the α position of the tetrapeptide component in gram-positive bacterial cell walls (alanine). Alpha-lytic protease is also capable of digesting elastin and other proteins.

<span class="mw-page-title-main">Glutamyl endopeptidase GluV8</span>

Glutamyl endopeptidase is an extracellular bacterial serine protease of the glutamyl endopeptidase I family that was initially isolated from the Staphylococcus aureus strain V8. The protease is, hence, commonly referred to as "V8 protease", or alternatively SspA from its corresponding gene.

Caricain is an enzyme. This enzyme catalyses the following chemical reaction: Hydrolysis of proteins with broad specificity for peptide bonds, similar to those of papain and chymopapain

<span class="mw-page-title-main">Scytalidopepsin B</span>

Scytalidocarboxyl peptidase B, also known as Scytalidoglutamic peptidase and Scytalidopepsin B is a proteolytic enzyme. It was previously thought to be an aspartic protease, but determination of its molecular structure showed it to belong a novel group of proteases, glutamic protease.

IgA-specific metalloendopeptidase is an enzyme. This enzyme catalyses the following chemical reaction:

<span class="mw-page-title-main">PA clan of proteases</span>

The PA clan is the largest group of proteases with common ancestry as identified by structural homology. Members have a chymotrypsin-like fold and similar proteolysis mechanisms but can have identity of <10%. The clan contains both cysteine and serine proteases. PA clan proteases can be found in plants, animals, fungi, eubacteria, archaea and viruses.

Asparagine peptide lyase are one of the seven groups in which proteases, also termed proteolytic enzymes, peptidases, or proteinases, are classified according to their catalytic residue. The catalytic mechanism of the asparagine peptide lyases involves an asparagine residue acting as nucleophile to perform a nucleophilic elimination reaction, rather than hydrolysis, to catalyse the breaking of a peptide bond.

<span class="mw-page-title-main">Phasevarion</span>

In bacteria, phasevarions mediate a coordinated change in the expression of multiple genes or proteins. This occurs via phase variation of a single DNA methyltransferase. Phase variation of methyltransferase expression results in differential methylation throughout the bacterial genome, leading to variable expression of multiple genes through epigenetic mechanisms.

N-glycosyltransferase is an enzyme in prokaryotes which transfers individual hexoses onto asparagine sidechains in substrate proteins, using a nucleotide-bound intermediary, within the cytoplasm. They are distinct from regular N-glycosylating enzymes, which are oligosaccharyltransferases that transfer pre-assembled oligosaccharides. Both enzyme families however target a shared amino acid sequence asparagine—-any amino acid except proline—serine or threonine (N–x–S/T), with some variations.

References

  1. Plaut AG (1983). "The IgA1 proteases of pathogenic bacteria". Annual Review of Microbiology. 37 (1): 603–22. doi:10.1146/annurev.mi.37.100183.003131. PMID   6416146.
  2. Bachovchin WW, Plaut AG, Flentke GR, Lynch M, Kettner CA (March 1990). "Inhibition of IgA1 proteinases from Neisseria gonorrhoeae and Hemophilus influenzae by peptide prolyl boronic acids". The Journal of Biological Chemistry. 265 (7): 3738–43. doi: 10.1016/S0021-9258(19)39656-5 . PMID   2105953.
  3. Qiu J, Brackee GP, Plaut AG (March 1996). "Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by a comparative study of ape serum IgAs as substrates". Infection and Immunity. 64 (3): 933–7. doi:10.1128/iai.64.3.933-937.1996. PMC   173859 . PMID   8641803.