Optional prisoner's dilemma

Last updated

The optional prisoner's dilemma (OPD) game models a situation of conflict involving two players in game theory. It can be seen as an extension of the standard prisoner's dilemma game, where players have the option to "reject the deal", that is, to abstain from playing the game. [1] This type of game can be used as a model for a number of real world situations in which agents are afforded the third option of abstaining from a game interaction such as an election. [2]

Payoff matrix

The structure of the optional prisoner's dilemma can be generalized from the standard prisoner's dilemma game setting. In this way, suppose that the two players are represented by the colors, red and blue, and that each player chooses to "Cooperate", "Defect" or "Abstain". [3]

The payoff matrix for the game is shown below:

Canonical OPD payoff matrix
CooperateDefectAbstain
CooperateR, RS, TL, L
DefectT, SP, PL, L
AbstainL, LL, LL, L

The following condition must hold for the payoffs:

T > R > L > P > S

Related Research Articles

An evolutionarily stable strategy (ESS) is a strategy that is impermeable when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science.

<i>The Evolution of Cooperation</i> 1984 book by Robert Axelrod

The Evolution of Cooperation is a 1984 book written by political scientist Robert Axelrod that expands upon a paper of the same name written by Axelrod and evolutionary biologist W.D. Hamilton. The article's summary addresses the issue in terms of "cooperation in organisms, whether bacteria or primates".

Zero-sum game is a mathematical representation in game theory and economic theory of a situation that involves two sides, where the result is an advantage for one side and an equivalent loss for the other. In other words, player one's gain is equivalent to player two's loss, with the result that the net improvement in benefit of the game is zero.

The prisoner's dilemma is a game theory thought experiment that involves two rational agents, each of whom can cooperate for mutual benefit or betray their partner ("defect") for individual reward. This dilemma was originally framed by Merrill Flood and Melvin Dresher in 1950 while they worked at the RAND Corporation. Albert W. Tucker later formalized the game by structuring the rewards in terms of prison sentences and named it the "prisoner's dilemma".

<span class="mw-page-title-main">Tit for tat</span> English saying meaning "equivalent retaliation"

Tit for tat is an English saying meaning "equivalent retaliation". It developed from "tip for tap", first recorded in 1558.

In economics and game theory, a participant is considered to have superrationality if they have perfect rationality but assume that all other players are superrational too and that a superrational individual will always come up with the same strategy as any other superrational thinker when facing the same problem. Applying this definition, a superrational player playing against a superrational opponent in a prisoner's dilemma will cooperate while a rationally self-interested player would defect.

The game of chicken, also known as the hawk-dove game or snowdrift game, is a model of conflict for two players in game theory. The principle of the game is that while the ideal outcome is for one player to yield, individuals try to avoid it out of pride, not wanting to look like "chickens." Each player taunts the other to increase the risk of shame in yielding. However, when one player yields, the conflict is avoided, and the game essentially ends.

Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

In game theory, grim trigger is a trigger strategy for a repeated game.

In game theory, the stag hunt, sometimes referred to as the assurance game, trust dilemma or common interest game, describes a conflict between safety and social cooperation. The stag hunt problem originated with philosopher Jean-Jacques Rousseau in his Discourse on Inequality. In the most common account of this dilemma, which is quite different from Rousseau's, two hunters must decide separately, and without the other knowing, whether to hunt a stag or a hare. However, both hunters know the only way to successfully hunt a stag is with the other's help. One hunter can catch a hare alone with less effort and less time, but it is worth far less than a stag and has much less meat. It would be much better for each hunter, acting individually, to give up total autonomy and minimal risk, which brings only the small reward of the hare. Instead, each hunter should separately choose the more ambitious and far more rewarding goal of getting the stag, thereby giving up some autonomy in exchange for the other hunter's cooperation and added might. This situation is often seen as a useful analogy for many kinds of social cooperation, such as international agreements on climate change.

In game theory, normal form is a description of a game. Unlike extensive form, normal-form representations are not graphical per se, but rather represent the game by way of a matrix. While this approach can be of greater use in identifying strictly dominated strategies and Nash equilibria, some information is lost as compared to extensive-form representations. The normal-form representation of a game includes all perceptible and conceivable strategies, and their corresponding payoffs, for each player.

In game theory, Deadlock is a game where the action that is mutually most beneficial is also dominant. This provides a contrast to the Prisoner's Dilemma where the mutually most beneficial action is dominated. This makes Deadlock of rather less interest, since there is no conflict between self-interest and mutual benefit. On the other hand, deadlock game can also impact the economic behaviour and changes to equilibrium outcome in society.

In game theory, an n-player game is a game which is well defined for any number of players. This is usually used in contrast to standard 2-player games that are only specified for two players. In defining n-player games, game theorists usually provide a definition that allow for any (finite) number of players. The limiting case of is the subject of mean field game theory.

In game theory, a subgame perfect equilibrium is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game, no matter what happened before. Every finite extensive game with perfect recall has a subgame perfect equilibrium. Perfect recall is a term introduced by Harold W. Kuhn in 1953 and "equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves".

In game theory, the traveler's dilemma is a non-zero-sum game in which each player proposes a payoff. The lower of the two proposals wins; the lowball player receives the lowball payoff plus a small bonus, and the highball player receives the same lowball payoff, minus a small penalty. Surprisingly, the Nash equilibrium is for both players to aggressively lowball. The traveler's dilemma is notable in that naive play appears to outperform the Nash equilibrium; this apparent paradox also appears in the centipede game and the finitely-iterated prisoner's dilemma.

<span class="mw-page-title-main">Simultaneous game</span>

In game theory, a simultaneous game or static game is a game where each player chooses their action without knowledge of the actions chosen by other players. Simultaneous games contrast with sequential games, which are played by the players taking turns. In other words, both players normally act at the same time in a simultaneous game. Even if the players do not act at the same time, both players are uninformed of each other's move while making their decisions. Normal form representations are usually used for simultaneous games. Given a continuous game, players will have different information sets if the game is simultaneous than if it is sequential because they have less information to act on at each step in the game. For example, in a two player continuous game that is sequential, the second player can act in response to the action taken by the first player. However, this is not possible in a simultaneous game where both players act at the same time.

Program equilibrium is a game-theoretic solution concept for a scenario in which players submit computer programs to play the game on their behalf and the programs can read each other's source code. The term was introduced by Moshe Tennenholtz in 2004. The same setting had previously been studied by R. Preston McAfee, J. V. Howard and Ariel Rubinstein.

Subjective expected relative similarity (SERS) is a normative and descriptive theory that predicts and explains cooperation levels in a family of games termed Similarity Sensitive Games (SSG), among them the well-known Prisoner's Dilemma game (PD). SERS was originally developed in order to (i) provide a new rational solution to the PD game and (ii) to predict human behavior in single-step PD games. It was further developed to account for: (i) repeated PD games, (ii) evolutionary perspectives and, as mentioned above, (iii) the SSG subgroup of 2×2 games. SERS predicts that individuals cooperate whenever their subjectively perceived similarity with their opponent exceeds a situational index derived from the game's payoffs, termed the similarity threshold of the game. SERS proposes a solution to the rational paradox associated with the single step PD and provides accurate behavioral predictions. The theory was developed by Prof. Ilan Fischer at the University of Haifa.

The Berge equilibrium is a game theory solution concept named after the mathematician Claude Berge. It is similar to the standard Nash equilibrium, except that it aims to capture a type of altruism rather than purely non-cooperative play. Whereas a Nash equilibrium is a situation in which each player of a strategic game ensures that they personally will receive the highest payoff given other players' strategies, in a Berge equilibrium every player ensures that all other players will receive the highest payoff possible. Although Berge introduced the intuition for this equilibrium notion in 1957, it was only formally defined by Vladislav Iosifovich Zhukovskii in 1985, and it was not in widespread use until half a century after Berge originally developed it.

References

  1. Cardinot, Marcos; Gibbons, Maud; O'Riordan, Colm; Griffith, Josephine (2016). "Simulation of an Optional Strategy in the Prisoner's Dilemma in Spatial and Non-spatial Environments". From Animals to Animats 14. Lecture Notes in Computer Science. Vol. 9825. pp. 145–156. doi:10.1007/978-3-319-43488-9_14. ISBN   978-3-319-43487-2.
  2. Batali, John; Kitcher, Philip (1995). "Evolution of altriusm in optional and compulsory games" (PDF). Journal of Theoretical Biology . 175 (2): 161–171. doi:10.1006/jtbi.1995.0128. S2CID   35935283. Archived from the original (PDF) on 2019-02-22.
  3. Cardinot, Marcos; O'Riordan, Colm; Griffith, Josephine (2016). "The Optional Prisoner's Dilemma in a Spatial Environment: Coevolving Game Strategy and Link Weights". ECTA. Proceedings of the 8th International Joint Conference on Computational Intelligence. Vol. 1. pp. 86–93. doi:10.5220/0006053900860093. ISBN   978-989-758-201-1.