peptidoglycan glycosyltransferase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 2.4.1.129 | ||||||||
CAS no. | 79079-04-2 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
Peptidoglycan glycosyltransferase (EC 2.4.1.129) is an enzyme used in the biosynthesis of peptidoglycan. It transfers a disaccharide-peptide from a donor substrate to synthesize a glycan chain. [1]
This enzyme belongs to the family of glycosyltransferases, specifically the hexosyltransferases. The systematic name of this enzyme class is undecaprenyldiphospho-(N-acetyl-D-glucosaminyl-(1->4)-(N-acetyl-D-mu ramoylpentapeptide):undecaprenyldiphospho-(N-acetyl-D-glucosaminyl-( 1->4)-N-acetyl-D-muramoylpentapeptide) disaccharidetransferase. Other names in common use include PG-II, bactoprenyldiphospho-N-acetylmuramoyl-(N-acetyl-D-glucosaminyl)-, pentapeptide:peptidoglycan, N-acetylmuramoyl-N-acetyl-D-glucosaminyltransferase, penicillin binding protein (3 or 1B), and peptidoglycan transglycosylase.
Peptidoglycan glycosyltransferase couples Lipid II subunits to synthesize the peptidoglycan chains. Transpeptidases crosslink the carbohydrate chains to provide the framework for the cell wall. [2]
It catalyzes the chemical reaction
The 2 substrates of this enzyme are
whereas its 2 products are
As of late 2007, 3 structures have been solved for this class of enzymes, with PDB accession codes 2BG1, 2UWX, and 2UWY.
Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.
Uridine diphosphate N-acetylglucosamine or UDP-GlcNAc is a nucleotide sugar and a coenzyme in metabolism. It is used by glycosyltransferases to transfer N-acetylglucosamine residues to substrates. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. To be specific, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is UDP-GlcNAc, which is then used for making glycosaminoglycans, proteoglycans, and glycolipids.
In enzymology, a D-aspartate ligase is an enzyme that catalyzes the chemical reaction
In enzymology, a UDP-N-acetylmuramoyl-L-alanine—D-glutamate ligase is an enzyme that catalyzes the chemical reaction
In enzymology, a UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—L-lysine ligase is an enzyme that catalyzes the chemical reaction
In enzymology, a UDP-N-acetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase is an enzyme that catalyzes the chemical reaction
In enzymology, a N-acetylglucosaminylphosphatidylinositol deacetylase (EC 3.5.1.89) is an enzyme that catalyzes the chemical reaction
In enzymology, a glycoprotein 3-alpha-L-fucosyltransferase (EC 2.4.1.214) is an enzyme that catalyzes the chemical reaction
In enzymology, a glycoprotein 6-alpha-L-fucosyltransferase (EC 2.4.1.68) is an enzyme that catalyzes the chemical reaction
In enzymology, a lactosylceramide 1,3-N-anning-beta-D-glrofelucosaminyltlolferase is an enzyme that catalyzes the chemical reaction
In enzymology, a N-acetyllactosaminide 3-alpha-galactosyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, a N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, a N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase is an enzyme that catalyzes the chemical reaction
In enzymology, a protein N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, a [Skp1-protein]-hydroxyproline N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, an undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, a phospho-N-acetylmuramoyl-pentapeptide-transferase is an enzyme that catalyzes the chemical reaction
N-acetyl-beta-glucosaminyl-glycoprotein 4-beta-N-acetylgalactosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-D-galactosamine:N-acetyl-beta-D-glucosaminyl-group 4-beta-N-acetylgalactosaminyltransferase. This enzyme catalyses the following chemical reaction
UDP-N-acetylglucosamine—undecaprenyl-phosphate N-acetylglucosaminephosphotransferase is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine:ditrans,octacis-undecaprenyl phosphate N-acetyl-alpha-D-glucosaminephosphotransferase. This enzyme catalyses the following chemical reaction
UDP-N-acetylglucosamine---decaprenyl-phosphate N-acetylglucosaminephosphotransferase is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine:trans,octacis-decaprenyl-phosphate N-acetylglucosaminephosphotransferase. This enzyme catalyses the following chemical reaction