Phosphidosilicates

Last updated

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [1] [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. [2] SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

The phosphidosilicates can be considered as a subclass of the pnictogenidosilicates, where P can be substituted by N (nitridosilicates), As, or Sb. Also Silicon can be substituted to form other series of compounds by replacement with other +4 oxidation state atoms like germanium, tin, titanium or even tantalum.

List

formulanamecrystal

system

space

group

unit cell ÅformMWdensitypropertiesreferences
Li2SiP2 tetragonal I41/acda=12.111 Å, c=18.658 Å, Z=32 V=2732.64 SiP4 tetrahedra are linked together to form a supertetrahedron. Supertetrahedrons are linked together by corner sharing.103.912.02 [2] [3]
LiSi2P3I41/aa=18.4757  Å, c=35.0982  Å, Z=100Interpenetrating networks of bridged supertetrahedra [3]
Li3Si3P7monoclinicP21/ma = 6.3356 Å, b = 7.2198 Å, c = 10.6176 Å, β = 102.941°, Z = 2grey [1]
Li5SiP3CubicFm3ma=5.84 Z=1.33SiP4 tetrahedra, but some Si replace by Li [4]
Li10Si2P6P21/na = 7.2051 Å, b = 6.5808 Å, c = 11.6405 Å, β = 90.580°, Z = 4contains Si2P6 units with two Si atoms linked by two P atomsalso known by Li5SiP3 [1]
Li8SiP4lithium orthophosphidosilicate cubic Pa3a=11.6784 Z=8 V=1592.76207.491.73orange red [2]
Li14SiP6CubicFm3ma=5.9393 Z=4SiP4 tetrahedra, but some Si replace by Li1.644 [5]
Na19Si13P25triclinicP1a =13.3550 Å, b =15.3909 Å, c =15.4609 Å, α =118.05°, β =111.71°, γ =93.05°, Z =2T3 supertetrahedrasodium ion conductor [6]
Na23Si19P33monoclinicC2/ca =28.4985 Å, b =16.3175 Å, c = 13.8732 Å, β =102.35°, Z =4solely T3 supertetrahedrasodium ion conductor [6]
Na23Si28P45monoclinicP21/ca =19.1630 Å, b =23.4038 Å, c = 19.0220 Å, β =104.30°, Z =4T3 and T4 supertetrahedrasodium ion conductor [6]
Na23Si37P57monoclinicC2/ca =34.1017 Å, b =16.5140 Å, c = 19.5764 Å, β =111.53°, Z =4solely T4 supertetrahedrasodium ion conductor [6]
LT-NaSi2P3tetragonalI41/aa =19.5431 Å, c = 34.5317 Å, Z =100fused T4 and T5 supertetrahedrasodium ion conductor [6]
HT-NaSi2P3tetragonalI41/acda =20.8976 Å, c = 40.081 Å, Z =128solely fused T5 supertetrahedrasodium ion conductor [6]
Na2SiP2disodium diphosphidosilicateTetrahedralPccna = 12.7929 Å, b = 22.3109 Å, c = 6.0522 Å and Z = 16edge‐shared SiP4 tetrahedra with 1 width chainsdark red 0.43 eV [7]
Na5SiP3monoclinicP21/cZ=4 a= 7.352 Å, b= 7.957, Å c= 13.164 Å, α=90.757°2.06also known by Na10Si2P6 band gap 1.292 eV [8] [9]
Na3K2SiP3trisodium dipotassium triphosphidosilicateOrthorhombicPnmaa=14.580 b=4.750 c= 13.020 V=901.7 Z=4SiP3 triangles [10]
Na4Ca2SiP4 hexagonal P63mca=913 c=617 V=151.5SiP4 tetrahedra2.128 [11]
Na4Sr2SiP4hexagonalP63mca=9.283 c=7.295 V=1642.498 [11]
Na4Eu2SiP4hexagonalP63mca=9.251 c=7.198 V=160.73.226 [11]
MgSiP2tetragonalI42da=5.721 c=10.095orange yellow; semiconductor band gap 2.24 eV; decomposed by water or acid [12]
AlSiP3orthorhombicPmnba = 9.872, b = 5.861, c = 6.088, Z=4P-P bondsblack [13] [14]
K2SiP2orthorhombicIbama = 12.926, b = 6.867, c= 6.107, Z=4, V=542.07one dimensional chain2.061 [13] [15]
KSi2P3monoclinicC2/ca=10.1327 Å, b=10.1382 Å, c=21.118 Å, β=96.88°, Z=8 V=2153.8Å3solely fused T3 supertetrahedra2.321dark red, band gap 1.72 eV [8]
KSi2P3tetragonalI41/acda =21.922 Å, c = 39.868 Å, Z =128solely fused T5 supertetrahedrapotassium ion conductor [16] [17]
Ca2Si2P4P41212a = 7.173, c = 26.295band gap 0.984 eV [18]
Ca3Si2P4monoclinica = 7.073 Å, b = 17.210 Å, c = 6.918 Å, β = 111.791°band gap 0.826 eV [18]
Ca3Si8P14monoclinicP21/ca = 12.138 Å, b = 13.476 Å, c = 6.2176 Å, β = 90.934°band gap 0.829 eV [18]
Ca4SiP4cubica=11.875 V=16752.48 [19]
MnSiP2tetrahedralI 4 2 da 5.5823 c 10.230metallic; SHG 32.8 pm/V [20]
Fe5SiPa=6.766 c=12.456 V=493.8 Z=66.83 [21]
CoSi3P3monoclinicP21(pseudo orthrhombic) a = 5.899, b = 5.703, c = 12.736, β = 90.00° Z=4resistivity 0.62 Ohm cm band gap 0.12 eV [22]
NiSi3P4tetragonalI42ma = 5.1598 c =10.350 Z = 23.22 [13] [23]
NiSi2P3Imm2a = 3.505, b = 11.071, c = 5.307, Z = 2 [13] [24]
FeSi4P4a = 4.876, b = 5.545, c = 6.064, α = 85.33°, β = 68.40°, γ = 70.43° Z=4 P and Si random3.38resistivity 0.3 Ohm cm band gap 0.15, can take in Li or Na [13] [22] [25]
Cu4SiP8I41/aa = 12.186, c = 5.732, Z = 8P-P bonds [13] [26]
ZnSiP2TetragonalI42da = 5.399 Å c = 10.435 Å Z=4 V=304.173 Å3chalcopyrite structure SiP4 and Zn4 tetrahedra154.9363.3 (measured)dark red clear; red luminescent; semiconductor; band gap 2.01 eV [13] [27] [28]
ZnSiP2Cubicover 27 GPa Superconductor Tc = 8.2K [28]
Sr2SiP4band gap 1.41 eV [29]
Sr4SiP4cubica=12.426 V=19193.48 [19]
SrSi7P10triclinicP1a =6.1521 Å, b =8.0420 Å, c =8.1374 Å, α =106.854°, β =99.020°, γ =105.190°, Z =1tetrahedral network derived from T2 supertetrahedraband gap 1.1 eV [30] [29]
RhSi3P3monoclinicC2a=5.525, b=7.210, c=5.522 β=118.31°, Z=2

P and Si random

4.005black [13] [31]
RuSi4P4triclinicP1a = 4.936, b = 5.634, c = 6.162, α = 85.51°, β = 68.26°, γ = 70.69° Z=1 V=1503.74metallic [22] [32]
RuSi4P4triclinicP1a=4.9362 b=5.6326 c=6.1649 α=85.5073° β=68.2559° γ=70.6990°3.732dark red;band gap 1.9 eV [33]
AgSiP2TetragonalI42d6.5275, c = 8.550, Z = 4; V = 364.3SiP4 corner sharing305.775.58shiny black [13]
Mg2In3Si2P7monoclinicP21a 6.9375 b 6.5646 c 14.469 β 103.87° Z=2639.73.458SHG 7.1 × AgGaS2; band gap 2.21 [34]
Sn4.2Si9P16rhombohedralR3a = 9.504 Å, α = 111.00°, and Z = 1band gap 0.2 [35]
CdSiP2tetragonalI42da = 5.680 c = 10.431 Å Z=4 V=336.494 Å3chalcopyrite structure202.4343.995carmine colour; red luminescent [13] [36] [37]
Cs2SiP2Dicesium catena-diphosphidosilicateOrthorhombicIbam [13]
Cs5SiP3Pentacesium triphosphidosilicateOrthorhombicPnmaa=6.064, b=14.336, c=15.722SiP3 planar trianglesdark metallic, air sensitive [38]
BaSi7P10triclinicP1a =6.1537 Å, b =8.0423 Å, c =8.1401 Å, α =106.863°, β =99.050°, γ =105.188°, Z =1tetrahedral network derived from T2 supertetrahedra [30]
Ba2SiP4TetragonalI42da = 9.90.57 Å, c = 7.31.80 Å; Z = 4 V=718.06 Åcontains P-P bonds426.65band gap 1.45 eV [39] [29]
Ba2SiP4OrthorhombicPnmaa=12.3710 b=4.6296 c=7.9783 Z= 8 V=1443.9chains of Si-P-Si426.653.925black band gap 1.7 eV [40]
Ba2Si3P6band gap 1.88 [29]
Ba3Si4P6monoclinicP21/ma=1153.7 Å, b=728.1 Å, c=752.7 Å, β = 99.41° V=623.76 Z=2Zintl compound P-P and Si-Si bonds3.78black metallic [13] [41]
Ba4SiP4cubica=13.023 V=22194.22 [13] [19]
BaCuSi2P3monoclinica=4.5659 b=10.1726 c=6.8236 β = 109.311 V=299.10layered [42]
LaSiP3 monoclinic a = 5.972, b = 25.255, c = 4.168, β= 135.71°, Z = 4two dimensional network of boat-shaped six-membered rings of Si-P-Si-P-Si-P [43]
LaSi2P6Cmc21a=10.129 b=28.17 c=10.374 Z=16P-P bonds380.93.42grey [13] [44]
La2Mg3SiP6orthorhombicPnmaa=11.421 b=8.213 c=10.677 Z=4 [45]
CeSiP3 orthorhombic Pn21aa = 5.861, b= 5.712, c= 25.295 V=846.7 Å3, Z=8P-P bonds261.134.095 [13] [46]
CeSi2P6Cmc21a= 10.118 b= 28.03 c= 10.311 Z= 16, V=2.924P-P bonds382.13.47grey [44]
Ce2Mg3SiP6orthorhombicPnmaa=11.356 b=8.188 c=10.564 Z=4 [45]
PrSi2P6Cmc21a= 10.085 b= 27.95 c= 10.267 Z= 16, V=2.895 nm3P-P bondsgrey [44]
NdSi2P6Cmc21a= 10.031,b= 27.81,c= 10.245,Z= 16, V=2.857P-P bondsgrey [44]
ReSi4P4
OsSi4P4 triclinic P1a = 4.948, b = 5.620, c = 6.175, α = 85.65, β = 68.36, γ = 70.89, Z=4 V=150.64.72metallic [22] [32]
IrSi3P3monoclinicC2a=6.577, b=7.229, c=5.484 β=117.91°, Z=2black [22] [31]
IrSi3P3monoclinicCma=6.5895 b=7.2470 c=5.4916 β=117.892dark red;band gap 1.8 eV [33]
PtSi2P2monoclinicP21a=6.025 Å, b=9.468 Å, c=11.913 Å, β=102.91°,Z=8, V=552.26.327high resistance metallic,shiny black, air sensitive [47]
PtSi3P2triclinicP1a=4.840 Å,b=5.482 Å,c=8.052 Å, α=91.57°, β=93.52°, γ=108.14°, Z=2 V=202.35.656shiny black [47]
AuSiP rhombohedral R3ma=3.459, c = 17.200, Z = 3; V = 178.19256.037.16shiny black [13]
Th2SiP5 triclinic a=4.04.3 Å, b=4.04.5 Å, c = 10.279 pm, α = 90.09°, β = 90.09° and γ = 89.50°, Z = 1chains of corner linked SiP4 tetrahedra, and square net of P [43]

Related Research Articles

The nitridoborates are chemical compounds of boron and nitrogen with metals. These compounds are typically produced at high temperature by reacting hexagonal boron nitride with metal nitrides or by metathesis reactions involving nitridoborates. A wide range of these compounds have been made involving lithium, alkaline earth metals and lanthanides, and their structures determined using crystallographic techniques such as X-ray crystallography. Structurally one of their interesting features is the presence of polyatomic anions of boron and nitrogen where the geometry and the B–N bond length have been interpreted in terms of π-bonding.

<span class="mw-page-title-main">Werner Urland</span> German chemist (born 1944)

Werner Urland is a German chemist whose name is imprinted in the pioneering implementation of the Angular Overlap Model for the interpretation of optical and magnetic properties of rare-earth coordination compounds. This approach receives a renewed value in the context of the vogue around the lanthanide-based new materials, such as achieving magnets at molecular scale, or designing new phosphor materials.

Georg Karl Brauer was a German chemist.

The telluride phosphides are a class of mixed anion compounds containing both telluride and phosphide ions. The phosphidotelluride or telluridophosphide compounds have a [TeP]3− group in which the tellurium atom has a bond to the phosphorus atom. A formal charge of −2 is on the phosphorus and −1 on the tellurium. There is no binary compound of tellurium and phosphorus. Not many telluride phosphides are known, but they have been discovered for noble metals, actinides, and group 4 elements.

The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I). They are in the class of mixed anion compounds or chalcogenide halides.

A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.

A chloride nitride is a mixed anion compound containing both chloride (Cl) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.

A Phosphide chloride is a mixed anion compound containing both phosphide (P3−) and chloride (Cl) ions.

Phosphide silicides or silicide phosphides or silicophosphides are compounds containing anions composed of silicide (Si4−) and phosphide (P3−). They can be considered as mixed anion compounds. They are distinct from the phosphidosilicates, which have the phosphorus bonded to the silicon. Related compounds include the phosphide carbides, germanide phosphides, nitride silicides, and antimonide silicides.

Phosphanides are chemicals containing the [PH2] anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Arsenidogermanates are chemical compounds that contain anions with arsenic bonded to germanium. They are in the category of tetrelarsenides, pnictidogermanates, or tetrelpnictides.

Phosphide iodides or iodide phosphides are compounds containing anions composed of iodide (I) and phosphide (P3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, arsenide iodides antimonide iodides and phosphide bromides.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

Arsenide chlorides or chloride arsenides are compounds containing anions composed of chloride (Cl) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide bromides, arsenide iodides, phosphide chlorides, and antimonide chlorides.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

Carbide bromides are mixed anion compounds containing bromide and carbide anions. Many carbide bromides are cluster compounds, containing on, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of bromide ions. These ions may be shared between clusters to form chains, double chains or layers.

Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, and encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.

Phosphidogermanates are chemical compounds that have phosphorus bound to germanium to yield anions. They are in the category of phosphidotetrelates and also pnictides. They are analogous to nitridogermanates, phosphidoaluminates, phosphidogallates, phosphidoindates, phosphidosilicates or phosphidostannates.

References

  1. 1 2 3 Eickhoff, Henrik; Toffoletti, Lorenzo; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Fässler, Thomas F. (24 May 2017). "Synthesis and Characterization of the Lithium-Rich Phosphidosilicates Li10Si2P5 and Li3Si3P7". Inorganic Chemistry . 56 (11): 6688–6694. doi:10.1021/acs.inorgchem.7b00755. PMID   28537719.
  2. 1 2 3 Toffoletti, Lorenzo; Kirchhain, Holger; Landesfeind, Johannes; Klein, Wilhelm; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas F. (5 December 2016). "Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, 7Li, 29Si, and 31P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8SiP4 and Li2SiP2". Chemistry - A European Journal . 22 (49): 17635–17645. doi:10.1002/chem.201602903. PMID   27786395.
  3. 1 2 Haffner, Arthur; Bräuniger, Thomas; Johrendt, Dirk (17 October 2016). "Supertetrahedral Networks and Lithium-Ion Mobility in Li2SiP2 and LiSi2P3". Angewandte Chemie International Edition. 55 (43): 13585–13588. doi:10.1002/anie.201607074. PMID   27676447.
  4. Juza, Robert; Schulz, Werner (1954-02-01). "Ternäre Phosphide und Arsenide des Lithiums mit Elementen der 3. und 4. Gruppe". Zeitschrift für Anorganische und Allgemeine Chemie. 275 (1–3): 65–78. doi:10.1002/zaac.19542750107. ISSN   1521-3749.
  5. Strangmüller, Stefan; Eickhoff, Henrik; Müller, David; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; Baran, Volodymyr; Senyshyn, Anatoliy; Deringer, Volker L.; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas F. (12 August 2019). "Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li14SiP6". Journal of the American Chemical Society. 141 (36): 14200–14209. doi:10.1021/jacs.9b05301. PMID   31403777. S2CID   199550654.
  6. 1 2 3 4 5 6 Haffner, Arthur; Hatz, Anna-Katharina; Moudrakovski, Igor; Lotsch, Bettina V.; Johrendt, Dirk (2018). "Fast Sodium-Ion Conductivity in Supertetrahedral Phosphidosilicates". Angewandte Chemie International Edition. 57 (21): 6155–6160. doi:10.1002/anie.201801405. ISSN   1521-3773. PMID   29611884.
  7. Haffner, Arthur; Hatz, Anna-Katharina; Hoch, Constatin; Lotsch, Bettina V.; Johrendt, Dirk (2020). "Synthesis and Structure of the Sodium Phosphidosilicate Na2SiP2". European Journal of Inorganic Chemistry. 2020 (7): 617–621. doi: 10.1002/ejic.201901083 .
  8. 1 2 Feng, Kai; Kang, Lei; Yin, Wenlong; Hao, Wenyu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2013). "KSi2P3: A new layered phosphidopolysilicate (IV)". Journal of Solid State Chemistry. 205: 129–133. Bibcode:2013JSSCh.205..129F. doi:10.1016/j.jssc.2013.07.018.
  9. Persson, Kristin (2014). "36 Materials Science". mp-5929: Na5SiP3 (monoclinic, P2_1/c, 14). LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). doi:10.17188/1277186.
  10. Eisenmann, B.; Klein, J.; Somer, M. (1991-12-01). "Crystal structure of trisodium dipotassium triphosphidosilicate, Na3K2SiP3". Zeitschrift für Kristallographie - Crystalline Materials. 197 (1–4): 275. Bibcode:1991ZK....197..275E. doi:10.1524/zkri.1991.197.14.275. ISSN   2196-7105. S2CID   101210322.
  11. 1 2 3 Nuss, J.; Kalpen, H.; Hönle, W.; Hartweg, M.; von Schnering, H. G. (1997-01-01). "Neue Tetrapnictidometallate von Silicium, Germanium, Zinn und Tantal mit der Na6ZnO4-Struktur". Zeitschrift für Anorganische und Allgemeine Chemie. 623 (1–6): 205–211. doi:10.1002/zaac.19976230134. ISSN   1521-3749.
  12. Springthorpe, A. J.; Harrison, J. G. (June 1969). "MgSiP2: a New Member of the II IV V2 Family of Semiconducting Compounds". Nature. 222 (5197): 977. Bibcode:1969Natur.222..977S. doi: 10.1038/222977a0 . ISSN   0028-0836. S2CID   4149732.
  13. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Kaiser, Peter; Jeitschko, Wolfgang (April 1997). "Preparation and Crystal Structures of the Ternary Compounds Ag2SiP2 and AuSiP" (PDF). Zeitschrift für Naturforschung B. 52 (4): 462–468. doi:10.1515/znb-1997-0406. S2CID   196951651. Open Access logo PLoS transparent.svg
  14. von Schnering, Hans Georg; Menge, Günter (1979). "AlSiP3, a compound with a novel wurtzite-pyrite intergrowth structure". Journal of Solid State Chemistry. 28 (1): 13–19. Bibcode:1979JSSCh..28...13V. doi:10.1016/0022-4596(79)90053-7.
  15. Eisenmann, Brigitte; Somer, Mehmet (1984-06-01). "K2SiP2, ein Phosphidopolysilikat(IV) / K2SiP2, a Phosphidopolysilicate (IV)". Zeitschrift für Naturforschung B. 39 (6): 736–738. doi: 10.1515/znb-1984-0607 . ISSN   1865-7117. S2CID   95293305.
  16. Johrendt, Dirk; Haffner, Arthur; Hatz, Anna-Katharina; Zeman, Otto E. O.; Hoch, Constantin; Lotsch, Bettina V. (2021-03-18). "Polymorphism and fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3". Angewandte Chemie: ange.202101187. doi:10.1002/ange.202101187. ISSN   0044-8249. S2CID   235534794.
  17. Johrendt, Dirk; Haffner, Arthur; Hatz, Anna-Katharina; Zeman, Otto E. O.; Hoch, Constantin; Lotsch, Bettina V. (2021). "Polymorphism and fast Potassium-Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3". Angewandte Chemie International Edition. 60 (24): 13641–13646. doi: 10.1002/anie.202101187 . ISSN   1521-3773. PMC   8252096 . PMID   33734533.
  18. 1 2 3 Zhang, Xiang; Yu, Tongtong; Li, Chunlong; Wang, Shanpeng; Tao, Xutang (2015-07-01). "Synthesis and Crystal Structures of the Calcium Silicon Phosphides Ca2Si2P4, Ca3Si8P14 and Ca3Si2P4". Zeitschrift für Anorganische und Allgemeine Chemie. 641 (8–9): 1545–1549. doi:10.1002/zaac.201400620. ISSN   1521-3749.
  19. 1 2 3 Eisenmann, B.; Jordan, H.; Schäfer, H. (1982). "Zintl-phasen mit komplexen anionen: Darstellung und struktur der o-phosphosilikate und -germanate EII4EIVP4 (MIT EII = Ca, Sr, Ba und EIV = Si, Ge)". Materials Research Bulletin. 17 (1): 95–99. doi:10.1016/0025-5408(82)90188-x.
  20. Yu, Tongtong; Wang, Shanpeng; Zhang, Xiang; Li, Chenning; Qiao, Jie; Jia, Ning; Han, Bing; Xia, Sheng-Qing; Tao, Xutang (2019-03-26). "MnSiP 2 : A New Mid-IR Ternary Phosphide with Strong SHG Effect and Ultrabroad Transparency Range". Chemistry of Materials. 31 (6): 2010–2018. doi:10.1021/acs.chemmater.8b05015. ISSN   0897-4756. S2CID   104328291.
  21. Ellner, M.; El-Boragy, M. (1992). "Über die eisenhaltigen vertreter des strukturtyps Pd5Sb2". Journal of Alloys and Compounds. 184 (1): 131–138. doi:10.1016/0925-8388(92)90461-h.
  22. 1 2 3 4 5 Perrier, Ch.; Kreisel, J.; Vincent, H.; Chaix-Pluchery, O.; Madar, R. (1997). "Synthesis, crystal structure, physical properties and Raman spectroscopy of transition metal phospho-silicides MSixPy (M = Fe, Co, Ru, Rh, Pd, Os, Ir, Pt)". Journal of Alloys and Compounds. 262–263: 71–77. doi:10.1016/s0925-8388(97)00331-9.
  23. May, Andrew F.; McGuire, Michael A.; Wang, Hsin (2013-03-13). "Thermoelectric properties of polycrystalline NiSi3P4". Journal of Applied Physics. 113 (10): 103707–103707–5. arXiv: 1303.3772 . Bibcode:2013JAP...113j3707M. doi:10.1063/1.4794992. ISSN   0021-8979. S2CID   119224937.
  24. Wallinda, Jörg; Jeitschko, Wolfgang (1995). "Ni1.282(4)Si1.284(5)P3 or NiSi2P3: Two Solutions with Different Atom Distributions for One Single-Crystal X-Ray Data Set, Both Refined to Residuals of Less Than 2.5%". Journal of Solid State Chemistry. 114 (2): 476–480. Bibcode:1995JSSCh.114..476W. doi:10.1006/jssc.1995.1071.
  25. Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure (2017). "FeSi 4 P 4 : A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries". Journal of Power Sources. 372: 196–203. Bibcode:2017JPS...372..196C. doi:10.1016/j.jpowsour.2017.10.069.
  26. Kaiser, Peter; Jeitschko, Wolfgang (1996-01-01). "Preparation and crystal structure of the Copper Silicon Polyphosphide Cu4SiP8". Zeitschrift für Anorganische und Allgemeine Chemie. 622 (1): 53–56. doi:10.1002/zaac.19966220109. ISSN   1521-3749.
  27. Abrahams, S. C.; Bernstein, J. L. (June 1970). "Crystal Structure of Luminescent ZnSiP4". The Journal of Chemical Physics. 52 (11): 5607–5613. Bibcode:1970JChPh..52.5607A. doi:10.1063/1.1672831.
  28. 1 2 Yuan, Yifang; Zhu, Xiangde; Zhou, Yonghui; Chen, Xuliang; An, Chao; Zhou, Ying; Zhang, Ranran; Gu, Chuanchuan; Zhang, Lili; Li, Xinjian; Yang, Zhaorong (December 2021). "Pressure-engineered optical properties and emergent superconductivity in chalcopyrite semiconductor ZnSiP2". NPG Asia Materials. 13 (1): 15. Bibcode:2021npjAM..13...15Y. doi: 10.1038/s41427-021-00285-0 . ISSN   1884-4049. S2CID   231886575.
  29. 1 2 3 4 Chen, Jindong; Wu, Qingchen; Tian, Haotian; Jiang, Xiaotian; Xu, Feng; Zhao, Xin; Lin, Zheshuai; Luo, Min; Ye, Ning (2022-03-31). "Uncovering a Vital Band Gap Mechanism of Pnictides". Advanced Science. 9 (14): 2105787. doi: 10.1002/advs.202105787 . ISSN   2198-3844. PMC   9109059 . PMID   35486031. S2CID   247861820.
  30. 1 2 Haffner, Arthur; Weippert, Valentin; Johrendt, Dirk (2021). "The Phosphidosilicates SrSi7P10 and BaSi7P10". Zeitschrift für anorganische und allgemeine Chemie. 647 (4): 326–330. doi: 10.1002/zaac.202000296 . ISSN   1521-3749.
  31. 1 2 Kirschen, M.; Vincent, H.; Perrier, Ch.; Chaudouet, P.; Chenevier, B.; Madar, R. (1995). "Synthesis and crystal structure of rhodium and iridium new phospho-silicides". Materials Research Bulletin. 30 (4): 507–513. doi:10.1016/0025-5408(95)00021-6.
  32. 1 2 Perrier, Ch.; Vincent, H.; Chaudouët, P.; Chenevier, B.; Madar, R. (1995). "Preparation and crystal structure of a new family of transition metal phospho-silicides". Materials Research Bulletin. 30 (3): 357–364. doi:10.1016/0025-5408(95)00001-1.
  33. 1 2 Lee, Shannon; Carnahan, Scott L.; Akopov, Georgiy; Yox, Philip; Wang, Lin‐Lin; Rossini, Aaron J.; Wu, Kui; Kovnir, Kirill (April 2021). "Noncentrosymmetric Tetrel Pnictides RuSi 4 P 4 and IrSi 3 P 3 : Nonlinear Optical Materials with Outstanding Laser Damage Threshold". Advanced Functional Materials. 31 (16): 2010293. doi: 10.1002/adfm.202010293 . ISSN   1616-301X.
  34. Chen, Jindong; Chen, Hongxiang; Xu, Feng; Cao, Liling; Jiang, Xiaotian; Yang, Shunda; Sun, Yingshuang; Zhao, Xin; Lin, Chensheng; Ye, Ning (2021-07-14). "Mg 2 In 3 Si 2 P 7 : A Quaternary Diamond-like Phosphide Infrared Nonlinear Optical Material Derived from ZnGeP 2". Journal of the American Chemical Society. 143 (27): 10309–10316. doi:10.1021/jacs.1c03930. ISSN   0002-7863. PMID   34196529. S2CID   235698297.
  35. Pivan, Jean-Yves; Guerin, Roland; Padiou, Jean; Sergent, Marcel (1988). "Preparation and crystal structure of the semiconducting compound Sn4.2Si9P16". Journal of Solid State Chemistry. 76 (1): 26–32. Bibcode:1988JSSCh..76...26P. doi:10.1016/0022-4596(88)90189-2.
  36. Abrahams, S. C.; Bernstein, J. L. (15 July 1971). "Luminescent Piezoelectric CdSiP2: Normal Probability Plot Analysis, Crystal Structure, and Generalized Structure of the AIIBIVC2IV Family". The Journal of Chemical Physics. 55 (2): 796–803. Bibcode:1971JChPh..55..796A. doi:10.1063/1.1676146.
  37. Zawilski, Kevin T.; Schunemann, Peter G.; Pollak, Thomas C.; Zelmon, David E.; Fernelius, Nils C.; Kenneth Hopkins, F. (April 2010). "Growth and characterization of large CdSiP2 single crystals". Journal of Crystal Growth. 312 (8): 1127–1132. Bibcode:2010JCrGr.312.1127Z. doi:10.1016/j.jcrysgro.2009.10.034.
  38. Eisenmann, Brigitte; Klein, Jürgen; Somer, Mehmet (1990-01-01). "CO 32−-isostere Anionen in Cs5SiP3, Cs5SiAs3, Cs5GeP3 und Cs5GeAs3". Angewandte Chemie. 102 (1): 92–93. Bibcode:1990AngCh.102...92E. doi:10.1002/ange.19901020127. ISSN   1521-3757.
  39. Johrendt, Dirk; Arthur, Haffner (2017). "Synthesis, Crystal Structure, and Chemical Bonding of Ba2SiP4". Zeitschrift für Anorganische und Allgemeine Chemie. 643 (21): 1717–1720. doi: 10.1002/zaac.201700320 . ISSN   1521-3749.
  40. Haffner, Arthur; Weippert, Valentin; Johrendt, Dirk (2019-11-08). "Polymorphism of Ba 2 SiP 4: Polymorphism of Ba 2 SiP 4". Zeitschrift für anorganische und allgemeine Chemie. doi: 10.1002/zaac.201900188 .
  41. Eisenmann, Brigitte; Jordan, Hanna; Schäfer, Herbert (1984). "Ba3Si4P6, eine neue Zintlphase mit vernetzten Si4P5-Käfigen/On Ba3Si4P6, a New Zintl Phase with Connected Si4P5 Cages" (PDF). Zeitschrift für Naturforschung B. 39 (7): 864–867. doi:10.1515/znb-1984-0705. S2CID   94537299.
  42. Yox, Philip; Lee, Shannon J.; Wang, Lin-lin; Jing, Dapeng; Kovnir, Kirill (2021-04-01). "Crystal Structure and Properties of Layered Pnictides BaCuSi 2 Pn 3 (Pn = P, As)". Inorganic Chemistry. 60 (8): 5627–5634. doi:10.1021/acs.inorgchem.0c03636. ISSN   0020-1669. PMID   33794094. S2CID   232762736.
  43. 1 2 Fehrmann, Birgit; Jeitschko, Wolfgang. "THE PHOSPHIDOSILICATE-POLYPHOSPHIDES LaSiP3 AND Th2SiP5". www.xray.cz. Retrieved 2 June 2017.
  44. 1 2 3 4 Kaiser, Peter; Jeitschko, Wolfgang (July 1996). "The Rare Earth Silicon PhosphidesLnSi2P6(Ln= La, Ce, Pr, and Nd)". Journal of Solid State Chemistry. 124 (2): 346–352. Bibcode:1996JSSCh.124..346K. doi:10.1006/jssc.1996.0248.
  45. 1 2 Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill (2017-07-17). "Synthesis, Crystal Structure, and Magnetic Properties of R 2 Mg 3 SiPn 6 (R = La, Ce; Pn = P, As)". Inorganic Chemistry. 56 (14): 8348–8354. doi:10.1021/acs.inorgchem.7b01015. ISSN   0020-1669.
  46. Hayakawa, Hiroshi; Ono, Shuitiro; Kobayashi, Akiko; Sasaki, Yukiyoshi (1978). "セリウムケイ素トリリン化物(CeSiP3)の結晶構造" [Crystal structure of cerium silicon triphosphide (CeSiP3)]. Nippon Kagaku Kaishi (9): 1214–1220. doi:10.1246/nikkashi.1978.1214.
  47. 1 2 Perrier, Ch.; Kirschen, M.; Vincent, H.; Gottlieb, U.; Chenevier, B.; Madar, R. (1997). "Synthesis and Crystal Structures of Two New Platinum Phosphosilicides, PtSi3P2and PtSi2P2; Electrical Resistivity of PtSi3P2". Journal of Solid State Chemistry. 133 (2): 473–478. Bibcode:1997JSSCh.133..473P. doi:10.1006/jssc.1997.7512.