The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [1] [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. [2] SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.
The phosphidosilicates can be considered as a subclass of the pnictogenidosilicates, where P can be substituted by N (nitridosilicates), As, or Sb. Also Silicon can be substituted to form other series of compounds by replacement with other +4 oxidation state atoms like germanium, tin, titanium or even tantalum.
formula | name | crystal system | space group | unit cell Å | form | MW | density | properties | references |
---|---|---|---|---|---|---|---|---|---|
Li2SiP2 | tetragonal | I41/acd | a=12.111 Å, c=18.658 Å, Z=32 V=2732.6 | 4 SiP4 tetrahedra are linked together to form a supertetrahedron. Supertetrahedrons are linked together by corner sharing. | 103.91 | 2.02 | [2] [3] | ||
LiSi2P3 | I41/a | a=18.4757 Å, c=35.0982 Å, Z=100 | Interpenetrating networks of bridged supertetrahedra | [3] | |||||
Li3Si3P7 | monoclinic | P21/m | a = 6.3356 Å, b = 7.2198 Å, c = 10.6176 Å, β = 102.941°, Z = 2 | grey | [1] | ||||
Li5SiP3 | Cubic | Fm3m | a=5.84 Z=1.33 | SiP4 tetrahedra, but some Si replace by Li | [4] | ||||
Li10Si2P6 | P21/n | a = 7.2051 Å, b = 6.5808 Å, c = 11.6405 Å, β = 90.580°, Z = 4 | contains Si2P6 units with two Si atoms linked by two P atoms | also known by Li5SiP3 | [1] | ||||
Li8SiP4 | lithium orthophosphidosilicate | cubic | Pa3 | a=11.6784 Z=8 V=1592.76 | 207.49 | 1.73 | orange red | [2] | |
Li14SiP6 | Cubic | Fm3m | a=5.9393 Z=4 | SiP4 tetrahedra, but some Si replace by Li | 1.644 | [5] | |||
Na19Si13P25 | triclinic | P1 | a =13.3550 Å, b =15.3909 Å, c =15.4609 Å, α =118.05°, β =111.71°, γ =93.05°, Z =2 | T3 supertetrahedra | sodium ion conductor | [6] | |||
Na23Si19P33 | monoclinic | C2/c | a =28.4985 Å, b =16.3175 Å, c = 13.8732 Å, β =102.35°, Z =4 | solely T3 supertetrahedra | sodium ion conductor | [6] | |||
Na23Si28P45 | monoclinic | P21/c | a =19.1630 Å, b =23.4038 Å, c = 19.0220 Å, β =104.30°, Z =4 | T3 and T4 supertetrahedra | sodium ion conductor | [6] | |||
Na23Si37P57 | monoclinic | C2/c | a =34.1017 Å, b =16.5140 Å, c = 19.5764 Å, β =111.53°, Z =4 | solely T4 supertetrahedra | sodium ion conductor | [6] | |||
LT-NaSi2P3 | tetragonal | I41/a | a =19.5431 Å, c = 34.5317 Å, Z =100 | fused T4 and T5 supertetrahedra | sodium ion conductor | [6] | |||
HT-NaSi2P3 | tetragonal | I41/acd | a =20.8976 Å, c = 40.081 Å, Z =128 | solely fused T5 supertetrahedra | sodium ion conductor | [6] | |||
Na2SiP2 | disodium diphosphidosilicate | Tetrahedral | Pccn | a = 12.7929 Å, b = 22.3109 Å, c = 6.0522 Å and Z = 16 | edge‐shared SiP4 tetrahedra with 1 width chains | dark red 0.43 eV | [7] | ||
Na5SiP3 | monoclinic | P21/c | Z=4 a= 7.352 Å, b= 7.957, Å c= 13.164 Å, α=90.757° | 2.06 | also known by Na10Si2P6 band gap 1.292 eV | [8] [9] | |||
Na3K2SiP3 | trisodium dipotassium triphosphidosilicate | Orthorhombic | Pnma | a=14.580 b=4.750 c= 13.020 V=901.7 Z=4 | SiP3 triangles | [10] | |||
Na4Ca2SiP4 | hexagonal | P63mc | a=913 c=617 V=151.5 | SiP4 tetrahedra | 2.128 | [11] | |||
Na4Sr2SiP4 | hexagonal | P63mc | a=9.283 c=7.295 V=164 | 2.498 | [11] | ||||
Na4Eu2SiP4 | hexagonal | P63mc | a=9.251 c=7.198 V=160.7 | 3.226 | [11] | ||||
MgSiP2 | tetragonal | I42d | a=5.721 c=10.095 | orange yellow; semiconductor band gap 2.24 eV; decomposed by water or acid | [12] | ||||
AlSiP3 | orthorhombic | Pmnb | a = 9.872, b = 5.861, c = 6.088, Z=4 | P-P bonds | black | [13] [14] | |||
K2SiP2 | orthorhombic | Ibam | a = 12.926, b = 6.867, c= 6.107, Z=4, V=542.07 | one dimensional chain | 2.061 | [13] [15] | |||
KSi2P3 | monoclinic | C2/c | a=10.1327 Å, b=10.1382 Å, c=21.118 Å, β=96.88°, Z=8 V=2153.8Å3 | solely fused T3 supertetrahedra | 2.321 | dark red, band gap 1.72 eV | [8] | ||
KSi2P3 | tetragonal | I41/acd | a =21.922 Å, c = 39.868 Å, Z =128 | solely fused T5 supertetrahedra | potassium ion conductor | [16] [17] | |||
Ca2Si2P4 | P41212 | a = 7.173, c = 26.295 | band gap 0.984 eV | [18] | |||||
Ca3Si2P4 | monoclinic | a = 7.073 Å, b = 17.210 Å, c = 6.918 Å, β = 111.791° | band gap 0.826 eV | [18] | |||||
Ca3Si8P14 | monoclinic | P21/c | a = 12.138 Å, b = 13.476 Å, c = 6.2176 Å, β = 90.934° | band gap 0.829 eV | [18] | ||||
Ca4SiP4 | cubic | a=11.875 V=1675 | 2.48 | [19] | |||||
MnSiP2 | tetrahedral | I 4 2 d | a 5.5823 c 10.230 | metallic; SHG 32.8 pm/V | [20] | ||||
Fe5SiP | a=6.766 c=12.456 V=493.8 Z=6 | 6.83 | [21] | ||||||
CoSi3P3 | monoclinic | P21 | (pseudo orthrhombic) a = 5.899, b = 5.703, c = 12.736, β = 90.00° Z=4 | resistivity 0.62 Ohm cm band gap 0.12 eV | [22] | ||||
NiSi3P4 | tetragonal | I42m | a = 5.1598 c =10.350 Z = 2 | 3.22 | [13] [23] | ||||
NiSi2P3 | Imm2 | a = 3.505, b = 11.071, c = 5.307, Z = 2 | [13] [24] | ||||||
FeSi4P4 | a = 4.876, b = 5.545, c = 6.064, α = 85.33°, β = 68.40°, γ = 70.43° Z=4 P and Si random | 3.38 | resistivity 0.3 Ohm cm band gap 0.15, can take in Li or Na | [13] [22] [25] | |||||
Cu4SiP8 | I41/a | a = 12.186, c = 5.732, Z = 8 | P-P bonds | [13] [26] | |||||
ZnSiP2 | Tetragonal | I42d | a = 5.399 Å c = 10.435 Å Z=4 V=304.173 Å3 | chalcopyrite structure SiP4 and Zn4 tetrahedra | 154.936 | 3.3 (measured) | dark red clear; red luminescent; semiconductor; band gap 2.01 eV | [13] [27] [28] | |
ZnSiP2 | Cubic | over 27 GPa Superconductor Tc = 8.2K | [28] | ||||||
Sr2SiP4 | band gap 1.41 eV | [29] | |||||||
Sr4SiP4 | cubic | a=12.426 V=1919 | 3.48 | [19] | |||||
SrSi7P10 | triclinic | P1 | a =6.1521 Å, b =8.0420 Å, c =8.1374 Å, α =106.854°, β =99.020°, γ =105.190°, Z =1 | tetrahedral network derived from T2 supertetrahedra | band gap 1.1 eV | [30] [29] | |||
RhSi3P3 | monoclinic | C2 | a=5.525, b=7.210, c=5.522 β=118.31°, Z=2 P and Si random | 4.005 | black | [13] [31] | |||
RuSi4P4 | triclinic | P1 | a = 4.936, b = 5.634, c = 6.162, α = 85.51°, β = 68.26°, γ = 70.69° Z=1 V=150 | 3.74 | metallic | [22] [32] | |||
RuSi4P4 | triclinic | P1 | a=4.9362 b=5.6326 c=6.1649 α=85.5073° β=68.2559° γ=70.6990° | 3.732 | dark red;band gap 1.9 eV | [33] | |||
AgSiP2 | Tetragonal | I42d | 6.5275, c = 8.550, Z = 4; V = 364.3 | SiP4 corner sharing | 305.77 | 5.58 | shiny black | [13] | |
Mg2In3Si2P7 | monoclinic | P21 | a 6.9375 b 6.5646 c 14.469 β 103.87° Z=2 | 639.7 | 3.458 | SHG 7.1 × AgGaS2; band gap 2.21 | [34] | ||
Sn4.2Si9P16 | rhombohedral | R3 | a = 9.504 Å, α = 111.00°, and Z = 1 | band gap 0.2 | [35] | ||||
CdSiP2 | tetragonal | I42d | a = 5.680 c = 10.431 Å Z=4 V=336.494 Å3 | chalcopyrite structure | 202.434 | 3.995 | carmine colour; red luminescent | [13] [36] [37] | |
Cs2SiP2 | Dicesium catena-diphosphidosilicate | Orthorhombic | Ibam | [13] | |||||
Cs5SiP3 | Pentacesium triphosphidosilicate | Orthorhombic | Pnma | a=6.064, b=14.336, c=15.722 | SiP3 planar triangles | dark metallic, air sensitive | [38] | ||
BaSi7P10 | triclinic | P1 | a =6.1537 Å, b =8.0423 Å, c =8.1401 Å, α =106.863°, β =99.050°, γ =105.188°, Z =1 | tetrahedral network derived from T2 supertetrahedra | [30] | ||||
Ba2SiP4 | Tetragonal | I42d | a = 9.90.57 Å, c = 7.31.80 Å; Z = 4 V=718.06 Å | contains P-P bonds | 426.65 | band gap 1.45 eV | [39] [29] | ||
Ba2SiP4 | Orthorhombic | Pnma | a=12.3710 b=4.6296 c=7.9783 Z= 8 V=1443.9 | chains of Si-P-Si | 426.65 | 3.925 | black band gap 1.7 eV | [40] | |
Ba2Si3P6 | band gap 1.88 | [29] | |||||||
Ba3Si4P6 | monoclinic | P21/m | a=1153.7 Å, b=728.1 Å, c=752.7 Å, β = 99.41° V=623.76 Z=2 | Zintl compound P-P and Si-Si bonds | 3.78 | black metallic | [13] [41] | ||
Ba4SiP4 | cubic | a=13.023 V=2219 | 4.22 | [13] [19] | |||||
BaCuSi2P3 | monoclinic | a=4.5659 b=10.1726 c=6.8236 β = 109.311 V=299.10 | layered | [42] | |||||
LaSiP3 | monoclinic | a = 5.972, b = 25.255, c = 4.168, β= 135.71°, Z = 4 | two dimensional network of boat-shaped six-membered rings of Si-P-Si-P-Si-P | [43] | |||||
LaSi2P6 | Cmc21 | a=10.129 b=28.17 c=10.374 Z=16 | P-P bonds | 380.9 | 3.42 | grey | [13] [44] | ||
La2Mg3SiP6 | orthorhombic | Pnma | a=11.421 b=8.213 c=10.677 Z=4 | [45] | |||||
CeSiP3 | orthorhombic | Pn21a | a = 5.861, b= 5.712, c= 25.295 V=846.7 Å3, Z=8 | P-P bonds | 261.13 | 4.095 | [13] [46] | ||
CeSi2P6 | Cmc21 | a= 10.118 b= 28.03 c= 10.311 Z= 16, V=2.924 | P-P bonds | 382.1 | 3.47 | grey | [44] | ||
Ce2Mg3SiP6 | orthorhombic | Pnma | a=11.356 b=8.188 c=10.564 Z=4 | [45] | |||||
PrSi2P6 | Cmc21 | a= 10.085 b= 27.95 c= 10.267 Z= 16, V=2.895 nm3 | P-P bonds | grey | [44] | ||||
NdSi2P6 | Cmc21 | a= 10.031,b= 27.81,c= 10.245,Z= 16, V=2.857 | P-P bonds | grey | [44] | ||||
ReSi4P4 | |||||||||
OsSi4P4 | triclinic | P1 | a = 4.948, b = 5.620, c = 6.175, α = 85.65, β = 68.36, γ = 70.89, Z=4 V=150.6 | 4.72 | metallic | [22] [32] | |||
IrSi3P3 | monoclinic | C2 | a=6.577, b=7.229, c=5.484 β=117.91°, Z=2 | black | [22] [31] | ||||
IrSi3P3 | monoclinic | Cm | a=6.5895 b=7.2470 c=5.4916 β=117.892 | dark red;band gap 1.8 eV | [33] | ||||
PtSi2P2 | monoclinic | P21 | a=6.025 Å, b=9.468 Å, c=11.913 Å, β=102.91°,Z=8, V=552.2 | 6.327 | high resistance metallic,shiny black, air sensitive | [47] | |||
PtSi3P2 | triclinic | P1 | a=4.840 Å,b=5.482 Å,c=8.052 Å, α=91.57°, β=93.52°, γ=108.14°, Z=2 V=202.3 | 5.656 | shiny black | [47] | |||
AuSiP | rhombohedral | R3m | a=3.459, c = 17.200, Z = 3; V = 178.19 | 256.03 | 7.16 | shiny black | [13] | ||
Th2SiP5 | triclinic | a=4.04.3 Å, b=4.04.5 Å, c = 10.279 pm, α = 90.09°, β = 90.09° and γ = 89.50°, Z = 1 | chains of corner linked SiP4 tetrahedra, and square net of P | [43] |
The nitridoborates are chemical compounds of boron and nitrogen with metals. These compounds are typically produced at high temperature by reacting hexagonal boron nitride with metal nitrides or by metathesis reactions involving nitridoborates. A wide range of these compounds have been made involving lithium, alkaline earth metals and lanthanides, and their structures determined using crystallographic techniques such as X-ray crystallography. Structurally one of their interesting features is the presence of polyatomic anions of boron and nitrogen where the geometry and the B–N bond length have been interpreted in terms of π-bonding.
Werner Urland is a German chemist whose name is imprinted in the pioneering implementation of the Angular Overlap Model for the interpretation of optical and magnetic properties of rare-earth coordination compounds. This approach receives a renewed value in the context of the vogue around the lanthanide-based new materials, such as achieving magnets at molecular scale, or designing new phosphor materials.
Georg Karl Brauer was a German chemist.
The telluride phosphides are a class of mixed anion compounds containing both telluride and phosphide ions. The phosphidotelluride or telluridophosphide compounds have a [TeP]3− group in which the tellurium atom has a bond to the phosphorus atom. A formal charge of −2 is on the phosphorus and −1 on the tellurium. There is no binary compound of tellurium and phosphorus. Not many telluride phosphides are known, but they have been discovered for noble metals, actinides, and group 4 elements.
The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I−). They are in the class of mixed anion compounds or chalcogenide halides.
A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.
The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.
A chloride nitride is a mixed anion compound containing both chloride (Cl−) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.
A Phosphide chloride is a mixed anion compound containing both phosphide (P3−) and chloride (Cl−) ions.
Phosphide silicides or silicide phosphides or silicophosphides are compounds containing anions composed of silicide (Si4−) and phosphide (P3−). They can be considered as mixed anion compounds. They are distinct from the phosphidosilicates, which have the phosphorus bonded to the silicon. Related compounds include the phosphide carbides, germanide phosphides, nitride silicides, and antimonide silicides.
Phosphanides are chemicals containing the [PH2]− anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).
Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.
Arsenidogermanates are chemical compounds that contain anions with arsenic bonded to germanium. They are in the category of tetrelarsenides, pnictidogermanates, or tetrelpnictides.
Phosphide iodides or iodide phosphides are compounds containing anions composed of iodide (I−) and phosphide (P3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, arsenide iodides antimonide iodides and phosphide bromides.
Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br−) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.
Arsenide chlorides or chloride arsenides are compounds containing anions composed of chloride (Cl−) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide bromides, arsenide iodides, phosphide chlorides, and antimonide chlorides.
Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.
Carbide bromides are mixed anion compounds containing bromide and carbide anions. Many carbide bromides are cluster compounds, containing on, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of bromide ions. These ions may be shared between clusters to form chains, double chains or layers.
Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, and encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.
Phosphidogermanates are chemical compounds that have phosphorus bound to germanium to yield anions. They are in the category of phosphidotetrelates and also pnictides. They are analogous to nitridogermanates, phosphidoaluminates, phosphidogallates, phosphidoindates, phosphidosilicates or phosphidostannates.