Rockfall protection embankment

Last updated

A rockfall protection embankment is an earthwork built in elevation with respect to the ground to intercept falling rock fragments before elements at risk such as roads and buildings are reached.

Contents

This term is widely used in the rockfall community but the terms bunds and walls are sometimes used as alternatives. [1]

Comparison with other passive mitigation structures

Rockfall protection embankments belong to the family of passive rockfall protection structures, comprising flexible barriers or galleries in particular. [2] They are intended for rockfalls with kinetic energies up to tens of megajoules and are preferred over flexible barriers when the design impact is higher than 5000 kJ. [3] Their declared advantages over other passive rockfall mitigation structures are low maintenance costs and reduced visual impact. Nevertheless, they are not appropriate on steep slopes and their construction generally requires extensive space and accessibility for heavy vehicles.

History

Small rockfall protection embankment; compacted ground and rockery facing. (Soazza, Switzerland) EmbakmentRockeryFacing.jpg
Small rockfall protection embankment; compacted ground and rockery facing. (Soazza, Switzerland)

The very first use of rockfall protection embankments dates back to the 1950s. Originally, embankments were mainly made from compacted natural soil and were designed for rather low-impact-energy events. [3] Most often, embankments were trapezoidal in cross-sectional shape, some-times with a rockery facing. [4] Ground-reinforced embankments were developed in the 1980s in view of increasing the height of embankments as well as their face inclination and impact strength. [5]

Rockfall protection embankment, 300 metres (1,000 ft) long and 7 metres (20 ft) high. Reinforced-ground and recycled tyres facing. (La Grave, France) ReinforcedRockfallProtectionEmbankment.jpg
Rockfall protection embankment, 300 metres (1,000 ft) long and 7 metres (20 ft) high. Reinforced-ground and recycled tyres facing. (La Grave, France)

Nowadays, there exist a wide variety of designs. Embankments may in particular differ by their cross-section shape and by their constitutive materials, such as rockery, geotextiles, geogrids, recycled tires, wire mesh or gabion cages. [3] Most common structures are ground compacted embankments with a rockery facing, while more impressive ones consist of earth-reinforced embankments (with height sometimes exceeding 10 meters). A French specificity also consists in using interconnected soil-filled recycled tires as facing material only or as both core and facing materials. [6]

Recent developments concern embankments with reduced foot-print (slenderness ratio higher than 1), [7] or associating different structural components or fills for improving the global structure impact strength and/or energy dissipative capacities. [8]

Design principles

Most often, rockfall protection embankments are erected at the toe of slopes, close to the elements at risk. The typical ranges for their height and length are 2–10 metres (10–30 ft) and 50–300 metres (200–1,000 ft) respectively. In the vast majority of cases, a ditch is associated to the embankment for containing the intercepted rock fragments.

The ability of an embankment in properly acting on rockfall propagation depends on its height and on its uphill face inclination. The embankment height is defined based on the rock block passing height at the embankment location, estimated from trajectory simulation numerical tools. [9] A low vertical batter of the face prevents from block over-rolling. [3]

Rockfall protection embankment surmounted by a rockfall barrier (Gotthard Pass, Switzerland) RockfallembankmentGotthardPass.jpg
Rockfall protection embankment surmounted by a rockfall barrier (Gotthard Pass, Switzerland)

In addition to issues related to rockfall trajectory control and classical geotechnical issues (e.g. external stability), rockfall protection embankments are designed to withstand the localized dynamic loading resulting from the interception of the fast-moving boulders (rock fragments with up to tens of tons mass sometimes exceeding 30 metres per second (70 mph) in translational velocity). Different approaches may be used to assess their impact strength, [3] [10] including numerical simulations. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Geotechnical engineering</span> Scientific study of earth materials in engineering problems

Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences. Geotechnical (rock) engineering is a subdiscipline of geological engineering.

<span class="mw-page-title-main">Landslide</span> Natural disaster involving ground movement

Landslides, also known as landslips, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls, deep-seated slope failures, mudflows, and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides. Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability that produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event, although this is not always identifiable.

<span class="mw-page-title-main">Retaining wall</span> Artificial wall used for supporting soil between two different elevations

Retaining walls are relatively rigid walls used for supporting soil laterally so that it can be retained at different levels on the two sides. Retaining walls are structures designed to restrain soil to a slope that it would not naturally keep to. They are used to bound soils between two different elevations often in areas of terrain possessing undesirable slopes or in areas where the landscape needs to be shaped severely and engineered for more specific purposes like hillside farming or roadway overpasses. A retaining wall that retains soil on the backside and water on the frontside is called a seawall or a bulkhead.

<span class="mw-page-title-main">Mass wasting</span> Movement of rock or soil down slopes

Mass wasting, also known as mass movement, is a general term for the movement of rock or soil down slopes under the force of gravity. It differs from other processes of erosion in that the debris transported by mass wasting is not entrained in a moving medium, such as water, wind, or ice. Types of mass wasting include creep, solifluction, rockfalls, debris flows, and landslides, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth, Mars, Venus, Jupiter's moons Io, and on many other bodies in the Solar System.

<span class="mw-page-title-main">Culvert</span> Structure that allows the passage of water or organisms under an obstruction

A culvert is a structure that channels water past an obstacle or to a subterranean waterway. Typically embedded so as to be surrounded by soil, a culvert may be made from a pipe, reinforced concrete or other material. In the United Kingdom, the word can also be used for a longer artificially buried watercourse.

<span class="mw-page-title-main">Rockfall</span> Rocks fallen freely from a cliff, roof, or quarry

A rockfall or rock-fall is a quantity/sheets of rock that has fallen freely from a cliff face. The term is also used for collapse of rock from roof or walls of mine or quarry workings. "A rockfall is a fragment of rock detached by sliding, toppling, or falling, that falls along a vertical or sub-vertical cliff, proceeds down slope by bouncing and flying along ballistic trajectories or by rolling on talus or debris slopes."

<span class="mw-page-title-main">Geotextile</span> Textile material used in ground stabilization and construction

Geotextiles are permeable fabrics which, when used in association with soil, have the ability to separate, filter, reinforce, protect, or drain. Typically made from polypropylene or polyester, geotextile fabrics come in two basic forms: woven and nonwoven.

<span class="mw-page-title-main">Gabion</span> Cage full of rock

A gabion is a cage, cylinder or box filled with rocks, concrete, or sometimes sand and soil for use in civil engineering, road building, military applications and landscaping.

<span class="mw-page-title-main">Soil nailing</span>

Soil nailing is a remedial construction measure to treat unstable natural soil slopes or unstable man-made (fill) slopes as a construction technique that allows the safe over-steepening of new or existing soil slopes. The technique involves the insertion of relatively slender reinforcing elements into the slope – often general purpose reinforcing bars (rebar) although proprietary solid or hollow-system bars are also available. Solid bars are usually installed into pre-drilled holes and then grouted into place using a separate grout line, whereas hollow bars may be drilled and grouted simultaneously by the use of a sacrificial drill bit and by pumping grout down the hollow bar as drilling progresses. Kinetic methods of firing relatively short bars into soil slopes have also been developed.

<span class="mw-page-title-main">Xbloc</span> Concrete breakwater element

An Xbloc is a wave-dissipating concrete block designed to protect shores, harbour walls, seawalls, breakwaters and other coastal structures from the direct impact of incoming waves. The Xbloc model was designed and developed by the Dutch firm Delta Marine Consultants, now called BAM Infraconsult, a subsidiary of the Royal BAM Group in 2001 and has been subjected to extensive research by several universities.

<span class="mw-page-title-main">Mechanically stabilized earth</span> Soil constructed with artificial reinforcing

Mechanically stabilized earth is soil constructed with artificial reinforcing. It can be used for retaining walls, bridge abutments, seawalls, and dikes. Although the basic principles of MSE have been used throughout history, MSE was developed in its current form in the 1960s. The reinforcing elements used can vary but include steel and geosynthetics.

<span class="mw-page-title-main">Embankment dam</span> Type of artificial dam

An embankment dam is a large artificial dam. It is typically created by the placement and compaction of a complex semi-plastic mound of various compositions of soil or rock. It has a semi-pervious waterproof natural covering for its surface and a dense, impervious core. This makes the dam impervious to surface or seepage erosion. Such a dam is composed of fragmented independent material particles. The friction and interaction of particles binds the particles together into a stable mass rather than by the use of a cementing substance.

Landslide mitigation refers to several man-made activities on slopes with the goal of lessening the effect of landslides. Landslides can be triggered by many, sometimes concomitant causes. In addition to shallow erosion or reduction of shear strength caused by seasonal rainfall, landslides may be triggered by anthropic activities, such as adding excessive weight above the slope, digging at mid-slope or at the foot of the slope. Often, individual phenomena join together to generate instability over time, which often does not allow a reconstruction of the evolution of a particular landslide. Therefore, landslide hazard mitigation measures are not generally classified according to the phenomenon that might cause a landslide. Instead, they are classified by the sort of slope stabilization method used:

<span class="mw-page-title-main">Embankment (earthworks)</span> Wall or bank to carry a road or rail over low ground or waters edge

Trestle bridge, and to the fill of the bridge approach embankment. To reduce the metal cost of the bridge here it is further supported by erecting metal piers.]]

<span class="mw-page-title-main">Cellular confinement</span> Confinement system used in construction and geotechnical engineering

Cellular confinement systems (CCS)—also known as geocells—are widely used in construction for erosion control, soil stabilization on flat ground and steep slopes, channel protection, and structural reinforcement for load support and earth retention. Typical cellular confinement systems are geosynthetics made with ultrasonically welded high-density polyethylene (HDPE) strips or novel polymeric alloy (NPA)—and expanded on-site to form a honeycomb-like structure—and filled with sand, soil, rock, gravel or concrete.

<span class="mw-page-title-main">Randa rockslides</span>

In April and May 1991, two consecutive rockslides occurred from a cliff above the town of Randa in the Matter valley of Switzerland. The rockslides released a cumulative volume of approximately 30 million cubic meters of debris, with each of the rockslide stages occurring over several hours. Slide debris buried key regional transportation lines including the road and railway leading to Zermatt, and dammed the Mattervispa river which eventually flooded a portion of the town of Randa upstream. There were no fatalities resulting from either of the rockslide events, though livestock, farmhouses and holiday homes were destroyed.

Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of earth and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock. Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement. The stability condition of slopes is a subject of study and research in soil mechanics, geotechnical engineering and engineering geology. Analyses are generally aimed at understanding the causes of an occurred slope failure, or the factors that can potentially trigger a slope movement, resulting in a landslide, as well as at preventing the initiation of such movement, slowing it down or arresting it through mitigation countermeasures.

<span class="mw-page-title-main">Rock shed</span> Road protection structure

A rock shed is a civil engineering structure used in mountainous areas where rock slides and land slides create highway closure problems. A rock shed is built over a roadway that is in the path of the slide. They are equally used to protect railroads. They are usually designed as a heavy reinforced concrete covering over the road, protecting the surface and vehicles from damage due to the falling rocks with a sloping surface to deflect slip material beyond the road, however an alternative is to include an impact-absorbing layer above the ceiling. A further use of this type of structure may be seen protecting the A4 road; although constructed primarily to alleviate risk from falling rocks from a limestone seam it also serves to protect against objects or persons falling from the Clifton Suspension Bridge where the height differential of approximately 70 metres from the bridge to the bottom of the Avon Gorge would give sufficient kinetic energy to even a relatively small item to cause injury on impact.

A flexible debris-resisting barrier is a structure used to mitigate debris flows or to contain flow-entrained woods. These structures mainly consist of interconnected metallic components. Flexible debris-resisting barrier are derived from rockfall barriers and were first proposed in the middle of the 1990s in the USA.

A rockfall barrier is a structure built to intercept rockfall, most often made from metallic components and consisting of an interception structure hanged on post-supported cables.

References

  1. Ewe, Eric (2020). "Reinforced soil bund as passive protection structures: the New Zealand experience". Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. pp. 1069–1082. doi: 10.36487/acg_repo/2025_71 . ISBN   978-0-9876389-7-7.
  2. Volkwein, A.; Schellenberg, K.; Labiouse, V.; Agliardi, F.; Berger, F.; Bourrier, F.; Dorren, L. K. A.; Gerber, W.; Jaboyedoff, M. (27 September 2011). "Rockfall characterisation and structural protection – a review". Natural Hazards and Earth System Sciences. 11 (9): 2617–2651. Bibcode:2011NHESS..11.2617V. doi: 10.5194/nhess-11-2617-2011 .
  3. 1 2 3 4 5 Lambert, S.; Bourrier, F. (February 2013). "Design of rockfall protection embankments: A review". Engineering Geology. 154: 77–88. doi:10.1016/j.enggeo.2012.12.012.
  4. Paronuzzi, P. (1989). "Criteri di progettazione di rilevati paramassi". Geologia Tecnica. 1: 23–41.
  5. 1 2 Peila, D.; Oggeri, C.; Castiglia, C. (7 September 2007). "Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests". Landslides. 4 (3): 255–265. doi:10.1007/s10346-007-0081-4. S2CID   110544862.
  6. Corté, J. (1989). "Design of a protective system against rock falls; example of RN 90 highway". Revue générale des routes et aérodromes. 664: 114–117.
  7. Lambert, Stéphane; Bourrier, Frank; Gotteland, Philippe; Nicot, François (August 2020). "An experimental investigation of the response of slender protective structures to rockfall impacts" (PDF). Canadian Geotechnical Journal. 57 (8): 1215–1231. doi:10.1139/cgj-2019-0147. S2CID   210316590.
  8. Lambert, S.; Heymann, A.; Gotteland, P.; Nicot, F. (23 May 2014). "Real-scale investigation of the kinematic response of a rockfall protection embankment". Natural Hazards and Earth System Sciences. 14 (5): 1269–1281. Bibcode:2014NHESS..14.1269L. doi: 10.5194/nhess-14-1269-2014 .
  9. Lambert, S.; Bourrier, F.; Toe, D. (June 2013). "Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments". International Journal of Rock Mechanics and Mining Sciences. 60: 26–36. doi:10.1016/j.ijrmms.2012.12.029.
  10. Lambert, Stéphane; Kister, Bernd (September 2018). "Efficiency assessment of existing rockfall protection embankments based on an impact strength criterion". Engineering Geology. 243: 1–9. doi:10.1016/j.enggeo.2018.06.008. S2CID   134358438.