Simarouba amara

Last updated

Simarouba amara
Simarouba amara canopy.JPG
The canopy of Simarouba amara
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Sapindales
Family: Simaroubaceae
Genus: Simarouba
Species:
S. amara
Binomial name
Simarouba amara
Aubl. 1775 [1]
Subspecies [2]
Synonyms
  • Quassia simarouba [3]
  • Quassia simaruba [3]
  • Zwingera amara [3]
  • Picraena officinalis [4]

Simarouba amara is a species of tree in the family Simaroubaceae, found in the rainforests and savannahs of South and Central America and the Caribbean. It was first described by Aubl. in French Guiana in 1775 and is one of six species of Simarouba . The tree is evergreen, but produces a new set of leaves once a year. It requires relatively high levels of light to grow and grows rapidly in these conditions, but lives for a relatively short time. In Panama, it flowers during the dry season in February and March, whereas in Costa Rica, where there is no dry season it flowers later, between March and July. As the species is dioecious, the trees are either male or female and only produce male or female flowers. The small yellow flowers are thought to be pollinated by insects, the resulting fruits are dispersed by animals including monkeys, birds and fruit-eating bats and the seeds are also dispersed by leaf cutter ants.

Contents

Simarouba amara has been studied extensively by scientists in an attempt to understand the tree and also to gain a better understanding of the ecology of the rainforest in general. Many of these studies were conducted on Barro Colorado Island in Panama or at La Selva Biological Station in Costa Rica. Of particular interest is how it competes with other species and with individuals of the same species at different stages in its life cycle. The seedlings are normally limited by the amount of light and nutrients found where they are growing and the saplings are considered relatively light demanding compared to other species. Young individuals are more likely to survive when they grow further away from their parents and when there are few other individuals growing near to them, which may be due to them being able to escape diseases. Plant physiologists have investigated how the leaves of the tree differ depending on their location in the forest canopy finding they are thicker in the canopy and thinner in the understory. They have also measured how the water potential of their leaves changes and when their stomata open and close during the day; the findings suggest that rather than closing their stomata to control water loss, it is controlled by the leaf area instead. Population geneticists have examined the way in which its genes vary, at both the local scale and across its range using microsatellites. It is genetically diverse, indicating gene flow occurs between populations and seeds can be dispersed up to 1 km. The leaves of S. amara are eaten by several species of caterpillar, particularly those in the genus Atteva . Several species of termite and ants live on or around the tree and lianas and epiphytes grow on the tree.

The bark of S. amara has been used by people in its range to treat dysentery and diarrhea, as well as other diseases, and was also exported to Europe in the eighteenth century to treat these illnesses. A number of compounds have since been isolated from the bark and have been shown to have antimicrobial effects. Local people use the wood of the tree for various purposes and it is also grown in plantations and harvested for its timber, some of which is exported.

Description

Simarouba amara grows to heights of up to 35 metres, with a maximum trunk diameter of 125 cm and a maximum estimated age of 121 years. [5] [6] [7] It has compound leaves that are each around 60 cm long, the petioles are 4–7 cm long and each leaf has 9–16 leaflets. Each leaflet is 2.5–11 cm long and 12–45 mm wide, with those towards the end of the compound leaf tending to be smaller. The flowers occur on a staminate panicle that is around 30 cm in length, which is widely branched and densely covered in flowers. [8] The flowers are unisexual, small (<1 cm long) and pale yellow in colour. They are thought to be pollinated by insects such as small bees and moths. On Barro Colorado Island (BCI), Panama, it tends to flower during the dry season from the end of January to the end of April, persisting for 11 to 15 weeks each year. [5] In Costa Rica, it flowers slightly later, between March and July, peaking in April. [9] Fruits form between 1 and 3 months after pollination occurs. The fruits are brightly colored green to purplish-black, approximately 17 mm long and contain large seeds (10–14 mm), they occur in groups of 3–5 drupes. The seeds cannot stay dormant and are dispersed by vertebrates. [5] Each seed weighs approximately 0.25 g. [6]

It is an evergreen species, with a new flush of leaves growing between January and April, during the dry season, when the highest light levels occur in the rainforest. This phenology is thought to allow S. amara to photosynthesise most effectively, since the new leaves are more efficient than those they replace. [7] [9] It has visible, but indistinct growth rings that are on average 7 mm wide. [7] A study of individuals in Panama found that they grow on average 8.4 mm in diameter each year, [10] in Costa Rica, growth rates as fast as 18 mm per year have been recorded, and the stem grows constantly throughout the year. [9] The xylem vessels in mature trees range from 20 to 90 μm in diameter, with around 50 vessels present per mm2 of branch. [11] The density of the wood is between 0.37–0.44 g/cm3, [6] lower than many other species in the rainforest. [12]

It is a fast-growing, light-demanding and shade-intolerant species. Saplings are typically one straight pole, with several compound leaves and only one point of growth. This allows the sapling to achieve the greatest vertical growth with a minimum amount of biomass. [13] They start to branch once they are 2–5 m tall. [14]

A study in the forest dynamics plot on BCI found that between 1982 and 2000, around 65% of individuals died, with mortality highest amongst small individuals (<1 cm dbh). Large trees (>20 cm dbh) are relatively rare, averaging 2.4 trees per hectare, compared to 40 trees per hectare of >1 cm dbh. [5]

Taxonomy

Illustration of S. amara (as Quassia simarouba) drawn by Adolphus Ypey and published in 1813. Note that the flowers are incorrectly coloured and should be yellow. Simarouba amara Ypey63.jpg
Illustration of S. amara (as Quassia simarouba) drawn by Adolphus Ypey and published in 1813. Note that the flowers are incorrectly coloured and should be yellow.

Simarouba amara was first described by Jean Baptiste Christophore Fusée Aublet in French Guiana in 1775 and is the type species of the genus Simarouba . [1] [2] In 1790, William Wright described Quassia simarouba, [15] which Auguste Pyrame DeCandolle suggested was the same species as S. amara. However, because S. amara was described as monoecious by Aublet and Q. simarouba was described as dioecious by Wright, they were still regarded as separate species in 1829. [16] By 1874, when the Flora Brasiliensis was published, they were considered synonymous. [17]

Among the six species of Simarouba, two besides S. amara occur on the continent: S. glauca and S. versicolor . S. amara can be distinguished from the other continental species by having smaller flowers, anthers and fruit, and straight, rather than curved petals. [18] The leaves of Simarouba amara subsp. opaca are not glaucous (a bluish-grey or green colour) on their underside, whereas those of Simarouba amara subsp. typica are. [2]

Table of the flower characteristics of S. amara and the two other continental Simarouba species
StructureS. amaraS. glaucaS. versicolor
Flower3–5 mm long4–7.5 mm long4–7.5 mm long
Anthers0.4–1.2 mm long1.3–2.0 mm long1.0–1.5 mm long
PetalsStraight, dull yellow-green to whiteCurved, brighter yellow with a touch of orange or redCurved
Fruits1.0–1.5 x 0.6–1.0 cm2.0–2.5 x 1.2–1.5 cm2.0–2.5 x 1.5–2.0 cm

Common names

Simarouba amara is known by many common names, where in the Neotropics. In Bolivia it is known as chiriuana, in Brazil as marupa, marupuaba, parahyba, paraiba and tamanqueira. In Colombia it is called simaruba, in Ecuador as cedro amargo, cuna and guitarro, in French Guiana as simarouba, in Guyana as simarupa, in Peru as marupa, in Surinam as soemaroeba and in Venezuela cedro blanco and simarouba. [19]

In Europe, it was known by various names during the nineteenth century when it was used as a medicine; these names included bitter ash, [20] bitterwood, [19] mountain damson [21] and stave-wood. [22]

Distribution

The range of Simarouba amara in green Simarouba amara distribution.svg
The range of Simarouba amara in green

The natural range of S. amara is in the Neotropics, the ecoregion of Central and South America. Its range extends from Guatemala in the north, to Bolivia in the south and from Ecuador in the west, to the east coast of Brazil. [18] It has been introduced to the islands of Dominica and Puerto Rico in the Caribbean Sea, becoming naturalised in Puerto Rico. [23] [24] On BCI, mature trees (>10 cm dbh) are found at a frequency of 5 per hectare, in Ecuador at 0.7 per hectare and in French Guiana at 0.4 per hectare. Genetic analysis of populations suggests that it has always been relatively common within its range. [25] It grows in rainforests and in savannahs. [26] The seedlings of S. amara are rare in primary forest due to their light-demanding habit. [13]

Genetics

Populations of S. amara display high levels of heterozygosity indicating that it is genetically diverse. This is consistent with the tree outcrossing over large distances by long-distance pollen flow and that there has been sufficient long distance gene flow between populations to counteract the effects of genetic drift. A study of 478 plants from 14 populations across South America found that 24% of all alleles occurred in only one population. [25] A study of 300 plants on Barro Colorado Island found that the heterozygosity at 5 microsatellite loci varied between 0.12 and 0.75. 8 out of the 50 alleles scored occurred in only one plant. [5]

Reproduction

Individuals do not typically reproduce until they have a trunk diameter of 30 cm. Once mature, the trees produce flowers each year, but not all females produce fruit each year. [5] Their flower morphology is typical of being pollinated by generalist small insects such as bees and moths. [5] It has been reported to be pollinated by non-sphingid moths, [27] but other authors have questioned whether this is correct. [28]

Seed dispersal

A mantled howler, one animal that disperses the seeds of S. amara Allouataadulto 500px.jpg
A mantled howler, one animal that disperses the seeds of S. amara

The seeds of S. amara are dispersed by vertebrates, mainly large birds and mammals, including chachalacas, flycatchers, motmots, thrushes, howler monkeys, tamarins [29] and spider monkeys. Leaf cutter ants have also been observed to disperse the seeds and dense seedling carpets form in areas where they dump waste material [5] but most of the seedlings die and dispersal by the ants is thought to be unimportant in determining the long-term patterns of recruitment and dispersal. [30] Seeds that are eaten by monkeys are more likely to germinate than seeds that have not. [31] Fruit-eating phyllostomid bats have also been noted to disperse their seeds; this may aid the regeneration of forests as they disperse the seeds of later successional species while they feed on S. amara. [32]

Based on inverse modelling of data from seed traps on BCI, the estimated average dispersal distance for seeds is 39 m. [5] Studying seedlings and parent trees on BCI using DNA microsatellites revealed that, in fact on average, seedlings grow 392 m away from their parents, with a standard deviation of ±234 m and a range of between 9 m and 1 km. In the forest there are many seeds and seedlings beneath reproductive females; genetic data indicate that seedlings are unlikely to be from nearby adults, but rather dispersed there by vertebrates that have fed on one tree and then moved to feed on another, defecating while in the canopy and depositing the seeds. [29]

Physiology

Various aspects of the physiology or S. amara have been studied. The stomatal conductance of the leaves, an indication of the rate at which water evaporates, of mature trees at midday range from 200 to 270 mmol H2O m−2 s−1. The leaf water potentials at midday range from −0.56 to −1.85 MPa, averaging around −1.2 MPa. Cavitation is widespread in the trunk and the stomata do not close before cavitation occurs. Although this would normally be considered deleterious to the tree, it may buffer the leaf water potential and therefore be beneficial. The stomatal conductance and hydraulic conductance of the branches of taller trees (~30 m) are much higher than in the branches of smaller trees (~20 m). Phillips, Bond and Ryan suggested that this is probably due to the branches of taller trees having a lower leaf-to-sapwood ratio than those of small branches. Dye staining shows that cavitation is common in the branches of S. amara. They concluded that water flux in S. amara is controlled by structural (leaf area), rather than physiological (closing stomata) means. [11]

Leaves absorb light in the photosynthetically active radiation (PAR) spectrum at wavelengths between 400 nm and 700 nm with a high efficiency, but the efficiency decreases at longer wavelengths. Generally plants absorb PAR at efficiencies of around 85%; the higher values found in S. amara are thought to be due to the high humidity of its habitat. The reflectance and transmittance of the leaves are low at between 400 and 700 nm. The optical properties and the mass of the leaves vary depending on their location in the forest canopy, with leaves becoming thicker and more efficient as their height within the canopy increases. For their weight, however, leaves in the understory are more efficient at capturing light than leaves in the canopy. [33]

Leaf optical properties as recorded from a study at La Selva, Costa Rica [33]
Absorbance (400-700 nm)Absorbance (700-750 nm) Reflectance (400-700 nm) Transmittance (400-700 nm)Leaf mass (g/m2)
Understory (~2m)91.7%37.3%6.3%2.1%36.9
Mid-canopy (~10m)92.8%41.6%6.1%1.2%55.4
Canopy (>20m)93.1%46.1%5.2%0.5%135.2

The concentration of bioavailable phosphate has been found to be higher underneath female individuals than underneath males, even though the total concentration of phosphate is equal. Rhoades et al. concluded that this difference was due to females changing the availability of phosphate, rather than females only growing in areas with high phosphate availability. This is thought to be caused either by the fruit containing high levels of phosphate which would fall off the tree and rot, or by the fruits attracting animals which deposit phosphate beneath the females. It is also possible that the sexes produce different root exudates, which affect the microbial community in their rhizosphere, thereby affecting phosphate availability. [34]

The woody tissues of S. amara have been found to respire at a rate of 1.24 μmol CO2 m−2 s−1, and this rate of respiration correlates positively with the growth rate of the stem. Maintenance respiration was calculated at 31.1 μmol CO2 m−3 s−1 and this rate correlated positively with the sapwood volume. [35]

Seedling physiology

saplings Simarouba amara.jpg
saplings
Nutrient concentrations in the leaves of seedlings [36]
NutrientConcentration (mg/g leaf)

(dry weight)

Nitrogen 20
Phosphorus 1
Potassium 16
Calcium 2
Magnesium 5

Experiments on BCI where trenches were dug around seedlings of S. amara, or where gaps in the canopy were made above them, show that their relative growth rate can be increased by both. This shows that their growth is normally limited by both above-ground competition for light and by below-ground competition for nutrients and water. Competition for light is normally more important, as shown by the growth rate increasing by almost 7 times and mortality decreasing, when seedlings were placed in gaps, compared to the understory. When seedlings in gaps had a trench dug round them to prevent below-ground competition their growth increased further, by 50%, demonstrating that in gaps the seedlings are limited by below-ground competition. Trenching around seedlings in the understory did not significantly increase their growth, showing that they are normally only limited by competition for light. [36]

Larger seedlings are more likely to survive the dry season on BCI than smaller seedlings. [37] Density-dependent inhibition occurs between seedlings: they are more likely to survive in areas where fewer seedlings of S. amara are growing. A study on individuals on BCI found that this pattern may be caused by differences in soil biota rather than by insect herbivores or fungal pathogens. [37] Observations based on the distance of seedlings from their parents indicate that the Janzen-Connell hypothesis applies to seedlings of S. amara: they are more likely to survive away from their parents as they escape pests such as herbivores and plant pathogens which are more common underneath the parent trees. [29]

Sapling physiology

Saplings of S. amara are light demanding and are found in brighter areas of the rainforest compared to Pitheullobium elegans and Lecythis ampla seedlings. A study at the La Selva Biological Station found the leaves weigh approximately 30 g/m2 (dry weight), similar to P. elegans, but around double the weight of L. ampla. The photosynthetic capacity of the leaves of S. amara is higher than that of the other two species, averaging around 6 μmol m−1 s−1. Dark respiration is on average 0.72 μmol m−1 s−1, higher than that of the other two species. The maximum photosynthetic rate correlates with both stem diameter and vertical growth. Diffuse light is thought to be more important for seedling growth than sunflecks. [13] Another study of saplings at La Selva found that they grew 7 cm yr−1 in height and 0.25 mm yr−1 in diameter. On average they had nine compound leaves, a leaf area index of 0.54 and the total surface area of their leaves was 124 cm2. The saplings that had the lowest leaf area were most likely to die during the study and those with a larger leaf area grew faster than other saplings. [14]

A study of saplings between one and four centimeters in diameter on BCI found that the growth of saplings did not vary depending on which species grew near them, contrary to predictions that density-dependence inhibition occurs. A model based on these findings predicted that saplings with a diameter of 2 cm are able to grow at a maximum rate of 13 mm yr−1 and that if another tree with a diameter of 10 cm is growing within 5 m of the sapling, its growth is only reduced to 12 mm yr−1, indicating that they are not affected by crowding. Trees growing more than 15 m away from a sapling do not affect their growth. [38]

Ecology

The lantern bug, Enchophora sanguinea is found preferentially on the trunks of S. amara Enchophora sanguinea natural1.jpg
The lantern bug, Enchophora sanguinea is found preferentially on the trunks of S. amara

Lianas are relatively rare on mature (>20 cm dbh) individuals of S. amara, compared to other trees on BCI, with only around 25% having lianas growing on them. Putz suggested that this may be due to the trees having large leaves, but the mechanism by which this would reduce the number of lianas is unknown. [10] Smaller individuals also have fewer lianas and woody hemi-epiphytes than other species of tree in the same forests. [39]

The ailanthus webworm ( Atteva aurea ) and other members of the genus Atteva have been recorded to eat the new shoot tips of S. amara in Costa Rica. [40] The larvae of the butterfly species, Bungalotis diophorus feed exclusively on saplings and treelets of S. amara. [41] Two termite species have been observed living on S. amara in Panama, Calcaritermes brevicollis in dead wood and Microcerotermes arboreus nesting in a gallery on a branch. [42] Bullet ants (Paraponera clavata) have been found to nest at the base of S. amara trees. [43] The Hemiptera, Enchophora sanguinea (Fulgoridae) has been found preferentially on the trunks of S. amara. [44] [45]

Uses

Materials

Simarouba amara is used locally for producing paper, furniture, plywood and matches and is also used in construction. [5] It is also grown in plantations, as its bright and lightweight timber is highly sought after in European markets for use in making fine furniture and veneers. [6] [46] The wood dries rapidly and is easy to work with normal tools. It is creamy white to light yellow in colour, with a coarse texture and a straight grain. It has to be treated to prevent fungi, wood borers and termites from eating it. The heartwood has a density of 0.35–0.45 g/cm3. [19] It has been noted to be one of the best species for timber that can be grown in the Peruvian Amazon, along with Cedrelinga catenaeformis , due to its rapid growth characteristics. [47] The Worldwide Fund for Nature recommend that consumers ensure S. amara timber is certified by the Forest Stewardship Council so that they do not contribute to deforestation. [48] Wood shavings of S. amara have been used in animal bedding leading to the poisoning of horses and dogs. [49]

Medical

The leaves and bark of S. amara have been used as an herbal medicine to treat dysentery, diarrhea, malaria and other illnesses in areas where it grows.[ citation needed ] In 1713, it was exported to France where it was used to treat dysentery, being an effective treatment during epidemics between 1718 and 1725. In 1918 its effectiveness was validated by a study where soldiers in a military hospital were given a tea made of the bark to treat amoebic dysentery.[ medical citation needed ] In a 1944 study, the Merck Institute found it was 92% effective at treating intestinal amoebiasis in humans.[ medical citation needed ] During the 1990s, scientists demonstrated it could kill the most common cause of dysentery, Entamoeba histolytica , and species of Salmonella and Shigella bacteria that cause diarrhea. [50] A greater amount of evidence is required to prove the efficacy of Simarouba.

The main biologically active compounds found in S. amara are the quassinoids, a group of triterpenes including ailanthinone, glaucarubinone, and holacanthone. These have been reported to kill protozoa, amoeba, Plasmodium (the cause of malaria). The antimalarial properties were first investigated by scientists in 1947; they found that in chickens, 1 mg of bark extract per 1 kg of body weight had strong antimalarial activity.[ medical citation needed ] In 1997 a patent was filed in the United States for using an extract in a skin care product. [50] Simarouba amara is not to be confused with Simarouba glauca, which is known as Lakshmi Taru in India.

Related Research Articles

<i>Quercus rubra</i> Species of flowering plant in the beech and oak family Fagaceae

Quercus rubra, the northern red oak, is an oak tree in the red oak group. It is a native of North America, in the eastern and central United States and southeast and south-central Canada. It has been introduced to small areas in Western Europe, where it can frequently be seen cultivated in gardens and parks. It prefers good soil that is slightly acidic. Often simply called red oak, northern red oak is so named to distinguish it from southern red oak (Q. falcata), also known as the Spanish oak. Northern red oak is sometimes called champion oak.

<span class="mw-page-title-main">Frugivore</span> Organism that eats mostly fruit

A frugivore is an animal that thrives mostly on raw fruits or succulent fruit-like produce of plants such as roots, shoots, nuts and seeds. Approximately 20% of mammalian herbivores eat fruit. Frugivores are highly dependent on the abundance and nutritional composition of fruits. Frugivores can benefit or hinder fruit-producing plants by either dispersing or destroying their seeds through digestion. When both the fruit-producing plant and the frugivore benefit by fruit-eating behavior the interaction is a form of mutualism.

<span class="mw-page-title-main">Seed dispersal</span> Movement or transport of seeds away from the parent plant

In spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, such as the wind, and living (biotic) vectors such as birds. Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. These modes are typically inferred based on adaptations, such as wings or fleshy fruit. However, this simplified view may ignore complexity in dispersal. Plants can disperse via modes without possessing the typical associated adaptations and plant traits may be multifunctional.

<i>Ailanthus altissima</i> Deciduous tree in the family Simaroubaceae

Ailanthus altissimaay-LAN-thəss al-TIH-sim-ə, commonly known as tree of heaven, Ailanthus, varnish tree, copal tree, stinking sumac, Chinese sumac, paradise tree, or in Chinese as chouchun, is a deciduous tree in the family Simaroubaceae. It is native to northeast and central China, and Taiwan. Unlike other members of the genus Ailanthus, it is found in temperate climates rather than the tropics.

<span class="mw-page-title-main">Simaroubaceae</span> Family of plants

The Simaroubaceae are a small, mostly tropical, family in the order Sapindales. In recent decades, it has been subject to much taxonomic debate, with several small families being split off. A molecular phylogeny of the family was published in 2007, greatly clarifying relationships within the family. Together with chemical characteristics such as the occurrence of petroselinic acid in Picrasma, in contrast to other members of the family such as Ailanthus, this indicates the existence of a subgroup in the family with Picrasma, Holacantha, and Castela.

<i>Quassia amara</i> Species of tree

Quassia amara, also known as amargo, bitter-ash, bitter-wood, or hombre grande is a species in the genus Quassia, with some botanists treating it as the sole species in the genus. The genus was named by Carl Linnaeus who named it after the first botanist to describe it: the Surinamese freedman Graman Quassi. Q. amara is used as insecticide, in traditional medicine and as additive in the food industry.

<span class="mw-page-title-main">Serotiny</span> Seed release in response to environment

Serotiny in botany simply means 'following' or 'later'.

<i>Socratea exorrhiza</i> Species of palm

Socratea exorrhiza, the walking palm or cashapona, is a palm native to rainforests in tropical Central and South America. It can grow to 25 metres in height, with a stem diameter of up to 16 cm, but is more typically 15–20 m tall and 12 cm in diameter. It has unusual stilt roots, the function of which has been debated. Many species of epiphyte have been found growing on the palms. The palm is pollinated by beetles, and various organisms eat its seeds or seedlings.

<i>Polylepis</i> Family of shrubs and trees

Polylepis is a genus comprising 28 recognised shrub and tree species, that are endemic to the mid- and high-elevation regions of the tropical Andes. This group is unique in the rose family in that it is predominantly wind-pollinated. They are usually gnarled in shape, but in certain areas some trees are 15–20 m tall and have 2 m-thick trunks. The foliage is evergreen, with dense small leaves, and often having large amounts of dead twigs hanging down from the underside of the canopy. The name Polylepis is, in fact, derived from the Greek words poly (many) plus letis (layers), referring to the shredding, multi-layered bark that is common to all species of the genus. The bark is thick and rough and densely layered for protection against low temperatures. Some species of Polylepis form woodlands growing well above normal tree line within grass and scrub associations at elevations over 5000 m; which makes Polylepis appear to be the highest naturally occurring arboraceous angiosperm genus in the world.

<i>Vateria indica</i> Species of tree

Vateria indica, the white dammar, is a species of tree in the family Dipterocarpaceae. It is endemic to the Western Ghats mountains in India. It is threatened by habitat loss. It is a large canopy or emergent tree frequent in tropical wet evergreen forests of the low and mid-elevations.

<i>Roystonea regia</i> Species of palm

Roystonea regia, commonly known as the Cuban royal palm or Florida royal palm, is a species of palm native to Mexico, the Caribbean, Florida, and parts of Central America. A large and attractive palm, it has been planted throughout the tropics and subtropics as an ornamental tree. Although it is sometimes called R. elata, the conserved name R. regia is now the correct name for the species. The royal palm reaches heights from 15–24 m (50–80 ft) tall. Populations in Cuba and Florida were long seen as separate species, but are now considered a single species.

<i>Tachigali versicolor</i> Species of legume

Tachigali versicolor or the suicide tree is a species of tree found from Costa Rica to western Colombia. It is monocarpic, flowering only once before dying, which gives rise to its common name of the "suicide tree".

<i>Simarouba</i> Family of shrubs and trees

Simarouba is a genus of trees and shrubs in the family Simaroubaceae, native to the neotropics. It has been grouped in the subtribe Simaroubina along with the Simaba and Quassia genera. They have compound leaves, with between 1 and 12 pairs of alternate pinnate leaflets. Their flowers are unisexual, relatively small and arranged in large panicles. Plants are dioecious, bearing only male or female flowers. The individual flowers have between 4 and 6 sepals and petals and between 8 and 12 stamens. The fruit is a carpophore and has up to 5 drupaceous mericarps.

<i>Platypodium elegans</i> Species of legume

Platypodium elegans, the graceful platypodium, is a large leguminous tree found in the Neotropics that forms part of the forest canopy. It was first described by Julius Rudolph Theodor Vogel in 1837 and is the type species of the genus. The tree has been known to grow up to 30 metres in height and have a trunk with a diameter up to 1 m at breast height. Its trunk has large holes in it, sometimes making it possible to see through the trunk. The holes provide a habitat for giant damselflies and other insects both when alive and once the tree has died and fallen over. It has compound leaves each of which is made up of 10–20 leaflets. Three new chemical compounds have been isolated from the leaves and they form part of the diet of several monkeys and the squirrel Sciurus ingrami. In Panama it flowers from April to June, the flowers contain only four ovules, but normally only one of these reaches maturity forming a winged seed pod around 10 cm long and weighing 2 g. During the dry season around a year after the flowers are fertilised, the seeds are dispersed by the wind and the tree loses it leaves. The seeds are eaten by agoutis and by bruchid beetle larvae. The majority of seedlings are killed by damping off fungi in the first few months of growth, with seedlings that grow nearer the parent trees being more likely to die. The seedlings are relatively unable to survive in deep shade compared to other species in the same habitat. Various epiphytes are known to grow on P. elegans with the cactus Epiphyllum phyllanthus being the most abundant in Panama. Despite having holes in its trunk which should encourage debris and seeds to collect, hemiepiphytes are relatively uncommon, meaning that animals are not attracted to it to feed and then defecate. It has no known uses in traditional medicine and although it can be used for timber, the wood is of poor quality.

<i>Mallotus tetracoccus</i> Species of tree

Mallotus tetracoccus, also known as the rusty kamala, is a species of flowering plant in the family Euphorbiaceae. It is a tree species found in parts of south Asia, typically occurring in the edges of tropical wet evergreen and semi-evergreen forests.

<span class="mw-page-title-main">Light gap</span> Ecological terminology

In ecology, a light gap is a break in forest canopy or similar barrier that allows young plants to grow where they would be otherwise inhibited by the lack of light reaching the seedbed. Light gaps form predominantly when a tree falls, and thus produces an opening in the forest canopy. Light gaps are important for maintaining diversity in species-rich ecosystems.

<i>Diospyros egrettarum</i> Species of tree

Diospyros egrettarum is a species of tree endemic to Mauritius and was once a dominant species throughout dry and coastal forests. Due to harvests for timber and firewood in the past the species was reduced to fewer than 10 individuals on the main land. The only viable population remained on Île aux Aigrettes, a coral island off the east coast, where it was able to survive thanks to protective measures, such as the eradication of exotic plants and rats. The tree is named after this Island.

<i>Gilbertiodendron dewevrei</i> Species of legume

Gilbertiodendron dewevrei is a species of tree in the family Fabaceae, native to tropical rain forests in Central Africa. It is often the dominant tree species of the Guineo-Congolian rainforest. The timber is traded as limbali, and is used for construction, flooring and railway sleepers. It is also used for making boats, furniture, tool handles and joinery and for making charcoal.

Julbernardia seretii, commonly known as the Congo zebrawood, is a species of legume in the family Fabaceae. It is found in tropical West and Central Africa.

Samadera indica also known as bitter wood and Niepa bark tree. It is a shrub or tree and grows primarily in wet tropical regions, from west Africa, through India, then down through Indonesia to Malesia.

References

  1. 1 2 Christophore Fusée Aublet, Jean Baptiste (1775). Histoire des plantes de la Guiane Françoise. London and Paris: Pierre-François Didot. pp. 860–861.
  2. 1 2 3 Cronquist, A. (1944). "Studies in the Simaroubaceae-II. The Genus Simarouba". Bulletin of the Torrey Botanical Club. 71 (3): 226–234. doi:10.2307/2481702. JSTOR   2481702.
  3. 1 2 3 Missouri Botanical Garden. "Synonyms of Simarouba amara". tropicos.org. Retrieved 2011-01-12.
  4. Herbert Stone (1904). "The timbers of Commerce and their identification". Nature. 71 (1837): 247. Bibcode:1905Natur..71..247.. doi:10.1038/071247b0. hdl: 2027/gri.ark:/13960/t18m0qr47 . S2CID   34933195 . Retrieved 13 January 2011.
  5. 1 2 3 4 5 6 7 8 9 10 Hardesty, B.; Dick, C.; Kremer, A.; Hubbell, S.; Bermingham, E. (2005). "Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree, on Barro Colorado Island, Panama". Heredity. 95 (4): 290–297. doi: 10.1038/sj.hdy.6800714 . hdl: 2027.42/83301 . PMID   16094303. S2CID   25442574.
  6. 1 2 3 4 Schulze, M.; Grogan, J.; Landis, R.; Vidal, E. (2008). "How rare is too rare to harvest?Management challenges posed by timber species occurring at low densities in the Brazilian Amazon". Forest Ecology and Management. 256 (7): 1443. doi:10.1016/j.foreco.2008.02.051.
  7. 1 2 3 Fichtler, E.; Clark, D. A.; Worbes, M. (2003). "Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C". Biotropica. 35 (3): 306–317. doi:10.1111/j.1744-7429.2003.tb00585.x. JSTOR   30043047. S2CID   86366029.
  8. Woodson, R. E.; Schery, R. W.; Porter, D. M. (1973). "Flora of Panama. Part VI. Family 90. Simaroubaceae". Annals of the Missouri Botanical Garden. 60 (1): 23–39. doi:10.2307/2394767. JSTOR   2394767.
  9. 1 2 3 O'Brien, J. J.; Oberbauer, S. F.; Clark, D. B.; Clark, D. A. (2007). "Phenology and Stem Diameter Increment Seasonality in a Costa Rican Wet Tropical Forest". Biotropica. 40 (2): 151. doi:10.1111/j.1744-7429.2007.00354.x. S2CID   10787182.
  10. 1 2 Putz, F. E. (1984). "How Trees Avoid and Shed Lianas". Biotropica. 16 (1): 19–23. Bibcode:1984Biotr..16...19P. doi:10.2307/2387889. JSTOR   2387889.
  11. 1 2 Phillips, N.; Bond, B. J.; Ryan, M. G. (2001). "Gas exchange and hydraulic properties in the crowns of two tree species in a Panamanian moist forest" (PDF). Trees. 15 (2): 123–130. Bibcode:2001Trees..15..123P. doi:10.1007/s004680000077. S2CID   420536. Archived from the original (PDF) on 2010-06-09. Retrieved 2010-08-02.
  12. Santiago, L.; Goldstein, G.; Meinzer, F.; Fisher, J.; MacHado, K.; Woodruff, D.; Jones, T. (2004). "Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees". Oecologia. 140 (4): 543–550. Bibcode:2004Oecol.140..543S. doi:10.1007/s00442-004-1624-1. PMID   15232729. S2CID   4981403.
  13. 1 2 3 Oberbauer, S. F.; Clark, D. B.; Clark, D. A.; Rich, P. M.; Vega, G. (2009). "Light environment, gas exchange, and annual growth of saplings of three species of rain forest trees in Costa Rica". Journal of Tropical Ecology. 9 (4): 511–523. doi:10.1017/S0266467400007586. S2CID   85727139.
  14. 1 2 Sterck, F. J.; Clark, D. B.; Clark, D. A.; Bongers, F. (1999). "Light Fluctuations, Crown Traits, and Response Delays for Tree Saplings in a Costa Rican Lowland Rain Forest". Journal of Tropical Ecology. 15 (1): 83–95. doi:10.1017/S0266467499000681. JSTOR   2560198. S2CID   10434491.
  15. "Quassia simarouba". Zipcodezoo.com. Retrieved 2011-01-10.
  16. Andrew Duncan (1829). Supplement to The Edinburgh new dispensatory. Printed for Bell & Bradfute. pp.  85–86.
  17. Nolan, Edw. J; Jones, Olive (2010-12-31). "Flora brasiliensis". Science. 35 (909): 864–5. Bibcode:1912Sci....35..864N. doi:10.1126/science.35.909.864. PMID   17820223. S2CID   5174658 . Retrieved 2011-01-04.
  18. 1 2 3 Franceschinelli, E. V.; Yamamoto, K.; Shepherd, G. J. (1998). "Distinctions among Three Simarouba Species". Systematic Botany. 23 (4): 479–488. doi:10.2307/2419379. JSTOR   2419379.
  19. 1 2 3 "Tropix 6.0 – Marupa" (PDF). TROPIX. CIRAD. 2009-03-24. Archived from the original (PDF) on 2011-07-20. Retrieved 2011-01-12.
  20. Rivière, Peter (2006). The Guiana travels of Robert Schomburgk, 1835–1844, Volume 17. Ashgate Publishing. p. 34. ISBN   978-0-904180-88-6.
  21. Robert Eglesfeld Griffith (1847). Medical botany. Lea and Blanchard. pp.  198. Retrieved 10 January 2011.
  22. A. H. R. Grisebach (1864). Flora of the British West Indian islands. Lovell Reeve and Co. p.  788 . Retrieved 10 January 2011.
  23. Moses Kairo, Bibi Ali, Oliver Cheesman, Karen Haysom and Sean Murphy (2003). "Invasive Species Threats in the Caribbean Region" (PDF). CABI. p. 122. Archived from the original (PDF) on 2016-10-01. Retrieved 2011-01-10.{{cite web}}: CS1 maint: multiple names: authors list (link)
  24. "Invasive and introduced tree species on Dominica". Food and Agriculture Organisation of the United Nations. 2009-04-01. Retrieved 2011-01-14.
  25. 1 2 Hardesty, B. D.; Dick, C. W.; Hamrick, J. L.; Degen, B.; Hubbell, S. P.; Bermingham, E. (2010). "Geographic Influence on Genetic Structure in the Widespread Neotropical Tree Simarouba amara (Simaroubaceae)". Tropical Plant Biology. 3: 28–39. doi:10.1007/s12042-010-9044-3. hdl: 2027.42/83290 . S2CID   10722698.
  26. Sanaiotti, T. M.; Magnusson, W. E. (1995). "Effects of Annual Fires on the Production of Fleshy Fruits Eaten by Birds in a Brazilian Amazonian Savanna". Journal of Tropical Ecology. 11 (1): 53–65. doi:10.1017/S0266467400008397. JSTOR   2560140. S2CID   84023140.
  27. Renner, S. S.; Feil, J. P. (1993). "Pollinators of Tropical Dioecious Angiosperms". American Journal of Botany. 80 (9): 1100–1107. doi:10.2307/2445757. JSTOR   2445757.
  28. Bawa, K. S. (1994). "Pollinators of Tropical Dioecious Angiosperms: A Reassessment? No, not yet". American Journal of Botany. 81 (4): 456–460. doi:10.2307/2445495. JSTOR   2445495.
  29. 1 2 3 Hardesty, B. D.; Hubbell, S. P.; Bermingham, E. (2006). "Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree". Ecology Letters. 9 (5): 516–525. doi:10.1111/j.1461-0248.2006.00897.x. PMID   16643297.
  30. Hardesty, B. D. (2011). "Effectiveness of seed dispersal by ants in a Neotropical tree". Integrative Zoology. 6 (3): 222–6. doi:10.1111/j.1749-4877.2011.00246.x. PMID   21910841.
  31. Stevenson, P. R.; Castellanos, M. C.; Pizarro, J. C.; Garavito, M. (2002). "Effects of Seed Dispersal by Three Ateline Monkey Species on Seed Germination at Tinigua National Park, Colombia". International Journal of Primatology. 23 (6): 1187. doi:10.1023/A:1021118618936. S2CID   5560227.
  32. Kelm, D. .; Wiesner, K. .; Von Helversen, O. . (2008). "Effects of artificial roosts for frugivorous bats on seed dispersal in a neotropical forest pasture mosaic". Conservation Biology. 22 (3): 733–741. Bibcode:2008ConBi..22..733K. doi:10.1111/j.1523-1739.2008.00925.x. PMID   18445078. S2CID   23047687.
  33. 1 2 Poorter, L.; Oberbauer, S. F.; Clark, D. B. (1995). "Leaf Optical Properties Along a Vertical Gradient in a Tropical Rain Forest Canopy in Costa Rica". American Journal of Botany. 82 (10): 1257–1263. doi:10.2307/2446248. JSTOR   2446248.
  34. Rhoades, C. C.; Sanford, R. L.; Clark, D. B. (1994). "Gender Dependent Influences on Soil Phosphorus by the Dioecious Lowland Tropical Tree Simarouba amara" (PDF). Biotropica. 26 (4): 362–368. Bibcode:1994Biotr..26..362R. doi:10.2307/2389229. JSTOR   2389229.
  35. Ryan, M. G.; Hubbard, R. M.; Clark, D. A.; Sanford, R. L. (1994). "Woody-Tissue Respiration for Simarouba amara and Minquartia guianensis, Two Tropical Wet Forest Trees with Different Growth Habits" (PDF). Oecologia. 100 (3): 213–220. Bibcode:1994Oecol.100..213R. doi:10.1007/BF00316947. PMID   28307003. S2CID   2296105.
  36. 1 2 Barberis, I. M.; Tanner, E. V. J. (2005). "Gaps and Root Trenching Increase Tree Seedling Growth in Panamanian Semi-Evergreen Forest". Ecology. 86 (3): 667–674. Bibcode:2005Ecol...86..667B. doi:10.1890/04-0677. JSTOR   3450661. S2CID   84821595.
  37. 1 2 Mangan, S.; Schnitzer, S.; Herre, E.; Mack, K.; Valencia, M.; Sanchez, E.; Bever, J. (2010). "Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest". Nature. 466 (7307): 752–755. Bibcode:2010Natur.466..752M. doi:10.1038/nature09273. PMID   20581819. S2CID   4327725.
  38. Uriarte, M. A.; Condit, R.; Canham, C. D.; Hubbell, S. P. (2004). "A Spatially Explicit Model of Sapling Growth in a Tropical Forest: Does the Identity of Neighbours Matter?". Journal of Ecology. 92 (2): 348–360. Bibcode:2004JEcol..92..348U. doi: 10.1111/j.0022-0477.2004.00867.x . JSTOR   3599599.
  39. Clark, D. B.; Clark, D. A. (1990). "Distribution and Effects on Tree Growth of Lianas and Woody Hemiepiphytes in a Costa Rican Tropical Wet Forest". Journal of Tropical Ecology. 6 (3): 321–331. doi:10.1017/S0266467400004570. JSTOR   2559832. S2CID   84035738.
  40. Wilson, J.; Landry, J. F. O.; Janzen, D.; Hallwachs, W.; Nazari, V.; Hajibabaei, M.; Hebert, P. (2010). "Identity of the ailanthus webworm moth (Lepidoptera, Yponomeutidae), a complex of two species: evidence from DNA barcoding, morphology and ecology". ZooKeys (46): 41–60. Bibcode:2010ZooK...46...41W. doi: 10.3897/zookeys.46.406 .
  41. Jeff, Miller; Daniel H. Janzen; Winifred Hallwachs (2009). One hundred butterflies and moths. Harvard University Press. ISBN   978-0-674-02334-5.
  42. Roisin, Y. .; Dejean, A. .; Corbara, B. .; Orivel, J. .; Samaniego, M. .; Leponce, M. . (2006). "Vertical stratification of the termite assemblage in a neotropical rainforest" (PDF). Oecologia. 149 (2): 301–311. Bibcode:2006Oecol.149..301R. doi:10.1007/s00442-006-0449-5. PMID   16791633. S2CID   7700084.
  43. Belk, M. C.; Black, H. L.; Jorgensen, C. D.; Hubbell, S. P.; Foster, R. B. (1989). "Nest Tree Selectivity by the Tropical Ant, Paraponera clavata". Biotropica. 21 (2): 173–177. Bibcode:1989Biotr..21..173B. doi:10.2307/2388707. JSTOR   2388707.
  44. Johnson, L. K.; Foster, R. B. (1985). "Associations of Large Homoptera and Trees in a Tropical Forest". Journal of the Kansas Entomological Society. 58 (3): 565. JSTOR   25084689.
  45. Naskrecki, P.; Nishida, K. (2007). "Novel trophobiotic interactions in lantern bugs (Insecta: Auchenorrhyncha: Fulgoridae)" (PDF). Journal of Natural History. 41 (37–40): 2397. Bibcode:2007JNatH..41.2397N. doi:10.1080/00222930701633570. S2CID   54791767.
  46. Granier, A.; Huc, R.; Colin, F. (1992). "Transpiration and stomatal conductance of two rain forest species growing in plantations (Simarouba amara and Goupia glabra) in French Guyana". Annales des Sciences Forestières. 49 (1): 17. doi: 10.1051/forest:19920102 .
  47. McClain, Michael; Reynaldo L. Victoria; Jeffrey Edward Richey (2001). The biogeochemistry of the Amazon Basin. Oxford University Press. p. 111. ISBN   978-0-19-511431-7.
  48. "Photographic guide to identify your timber". Worldwide Fund for Nature (WWF). Retrieved 2011-01-04.
  49. Declercq, J. (2004). "Suspected wood poisoning caused by Simarouba amara (marupá/caixeta) shavings in two dogs with erosive stomatitis and dermatitis". Veterinary Dermatology. 15 (3): 188–193. doi:10.1111/j.1365-3164.2004.00377.x. PMID   15214956.
  50. 1 2 The Virtual Field Herbarium. "Simaroubaceae Simarouba amara Aublet". Oxford University Herbarium. Archived from the original on 2011-07-18. Retrieved 2011-01-11.