Disease vector

Last updated
A mosquito shortly after obtaining blood from a human (note the droplet of blood plasma being expelled as the mosquito squeezes out excess water). Mosquitos are a vector for several diseases, including malaria. Anopheles stephensi.jpeg
A mosquito shortly after obtaining blood from a human (note the droplet of blood plasma being expelled as the mosquito squeezes out excess water). Mosquitos are a vector for several diseases, including malaria.

In epidemiology, a disease vector is any living [1] agent that carries and transmits an infectious pathogen such as a parasite or microbe, to another living organism. [2] [3] Agents regarded as vectors are mostly blood-sucking insects such as mosquitoes. The first major discovery of a disease vector came from Ronald Ross in 1897, who discovered the malaria pathogen when he dissected the stomach tissue of a mosquito. [4]

Contents

Arthropods

The deer tick, a vector for Lyme disease pathogens Adult deer tick(cropped).jpg
The deer tick, a vector for Lyme disease pathogens

Arthropods form a major group of pathogen vectors with mosquitoes, flies, sand flies, lice, fleas, ticks, and mites transmitting a huge number of pathogens. Many such vectors are haematophagous, which feed on blood at some or all stages of their lives. When the insects feed on blood, the pathogen enters the blood stream of the host. This can happen in different ways. [5] [6]

The Anopheles mosquito, a vector for malaria, filariasis, and various arthropod-borne-viruses (arboviruses), inserts its delicate mouthpart under the skin and feeds on its host's blood. The parasites the mosquito carries are usually located in its salivary glands (used by mosquitoes to anaesthetise the host). Therefore, the parasites are transmitted directly into the host's blood stream. Pool feeders such as the sand fly and black fly, vectors for pathogens causing leishmaniasis and onchocerciasis respectively, will chew a well in the host's skin, forming a small pool of blood from which they feed. Leishmania parasites then infect the host through the saliva of the sand fly. Onchocerca force their own way out of the insect's head into the pool of blood. [7] [8]

Triatomine bugs are responsible for the transmission of a trypanosome, Trypanosoma cruzi , which causes Chagas disease. The Triatomine bugs defecate during feeding and the excrement contains the parasites, which are accidentally smeared into the open wound by the host responding to pain and irritation from the bite. [9] [10] [11] [12]

There are several species of Thrips that act as vectors for over 20 viruses, especially Tospoviruses, and cause all sorts of plant diseases. [13] [14]

Plants and fungi

Some plants and fungi act as vectors for various pathogens. For example, the big-vein disease of lettuce was long thought to be caused by a member of the fungal division Chytridiomycota, namely Olpidium brassicae . Eventually, however, the disease was shown to be viral. Later it transpired that the virus was transmitted by the zoospores of the fungus and also survived in the resting spores. Since then, many other fungi in Chytridiomycota have been shown to vector plant viruses. [15]

Many plant pests that seriously damage important crops depend on other plants, often weeds, to harbour or vector them; the distinction is not always clear. In the case of Puccinia graminis for example, Berberis and related genera act as alternate hosts in a cycle of infection of grain. [16]

More directly, when they twine from one plant to another, parasitic plants such as Cuscuta and Cassytha have been shown to convey phytoplasmal and viral diseases between plants. [17] [15]

Mammals

Rabies is transmitted through exposure to the saliva or brain tissue of an infected animal. Any warm-blooded animal can carry rabies, but the most common vectors are dogs, skunks, raccoons, and bats. [18]

Vector-borne zoonotic disease and human activity

This figure shows how the Flavivirus is carried by mosquitos in the West Nile virus and Dengue fever. The mosquito would be considered a disease vector. Disease Vector.jpg
This figure shows how the Flavivirus is carried by mosquitos in the West Nile virus and Dengue fever. The mosquito would be considered a disease vector.

Several articles, recent to early 2014, warn that human activities are spreading vector-borne zoonotic diseases. [lower-alpha 1] Several articles were published in the medical journal The Lancet , and discuss how rapid changes in land use, trade globalization, climate change and "social upheaval" are causing a resurgence in zoonotic disease across the world. [19]

Examples of vector-borne zoonotic diseases include: [20]

Many factors affect the incidence of vector-borne diseases. These factors include animals hosting the disease, vectors, and people. [20]

Humans can also be vectors for some diseases, such as Tobacco mosaic virus , physically transmitting the virus with their hands from plant to plant.[ citation needed ]

Control and prevention

Public health agencies educate people about many different disease vectors. This artwork, at the London School of Hygiene and Tropical Medicine, shows 10 different animal vectors. Gilded Vectors of Disease - Horizontal.jpg
Public health agencies educate people about many different disease vectors. This artwork, at the London School of Hygiene and Tropical Medicine, shows 10 different animal vectors.

The World Health Organization (WHO) states that control and prevention of vector-borne diseases are emphasizing "Integrated Vector Management (IVM)", [21] which is an approach that looks at the links between health and environment, optimizing benefits to both. [lower-alpha 2] [22]

In April 2014, WHO launched a campaign called "Small bite, big threat" to educate people about vector-borne illnesses. WHO issued reports indicating that vector-borne illnesses affect poor people, especially people living in areas that do not have adequate levels of sanitation, drinking water and housing. [23] It is estimated that over 80% of the world's population resides in areas under threat of at least one vector borne disease. [24] [25]

See also

Notes

  1. "Vector-borne zoonotic diseases are those that naturally infect wildlife and are then transmitted to humans through carriers, or vectors, such as mosquitoes or ticks." [19]
  2. "IVM strategies are designed to achieve the greatest disease control benefit in the most cost-effective manner, while minimizing negative impacts on ecosystems (e.g. depletion of biodiversity) and adverse side-effects on public health from the excessive use of chemicals in vector control." [22]

Related Research Articles

<span class="mw-page-title-main">Mosquito</span> Family of flies

Mosquitoes are a family, the Culicidae, of some 3,600 species of small flies. The word "mosquito" is Spanish for "little fly". Mosquitoes have a slender segmented body, one pair of wings, three pairs of long hair-like legs, and specialized, highly elongated, piercing-sucking mouthparts. All mosquitoes drink nectar from flowers; females of some species have in addition adapted to drink blood. Evolutionary biologists view mosquitoes as micropredators, small animals that parasitise larger ones by drinking their blood without immediately killing them. Medical parasitologists view mosquitoes instead as vectors of disease, carrying protozoan parasites or bacterial or viral pathogens from one host to another.

<span class="mw-page-title-main">West Nile fever</span> Human disease caused by West Nile virus infection

West Nile fever is an infection by the West Nile virus, which is typically spread by mosquitoes. In about 80% of infections people have few or no symptoms. About 20% of people develop a fever, headache, vomiting, or a rash. In less than 1% of people, encephalitis or meningitis occurs, with associated neck stiffness, confusion, or seizures. Recovery may take weeks to months. The risk of death among those in whom the nervous system is affected is about 10 percent.

<span class="mw-page-title-main">Arbovirus</span> Common name for several species of virus

Arbovirus is an informal name for any virus that is transmitted by arthropod vectors. The term arbovirus is a portmanteau word. Tibovirus is sometimes used to more specifically describe viruses transmitted by ticks, a superorder within the arthropods. Arboviruses can affect both animals and plants. In humans, symptoms of arbovirus infection generally occur 3–15 days after exposure to the virus and last three or four days. The most common clinical features of infection are fever, headache, and malaise, but encephalitis and viral hemorrhagic fever may also occur.

<span class="mw-page-title-main">Natural reservoir</span> Type of population in infectious disease ecology

In infectious disease ecology and epidemiology, a natural reservoir, also known as a disease reservoir or a reservoir of infection, is the population of organisms or the specific environment in which an infectious pathogen naturally lives and reproduces, or upon which the pathogen primarily depends for its survival. A reservoir is usually a living host of a certain species, such as an animal or a plant, inside of which a pathogen survives, often without causing disease for the reservoir itself. By some definitions a reservoir may also be an environment external to an organism, such as a volume of contaminated air or water.

<span class="mw-page-title-main">Triatominae</span> Subfamily of true bugs

The members of the Triatominae, a subfamily of the Reduviidae, are also known as conenose bugs, kissing bugs, or vampire bugs. Other local names for them used in the Americas include barbeiros, vinchucas, pitos, chipos and chinches. Most of the 130 or more species of this subfamily feed on vertebrate blood; a very small portion of species feed on invertebrates. They are mainly found and widespread in the Americas, with a few species present in Asia and Africa. These bugs usually share shelter with nesting vertebrates, from which they suck blood. In areas where Chagas disease occurs, all triatomine species are potential vectors of the Chagas disease parasite Trypanosoma cruzi, but only those species that are well adapted to living with humans are considered important vectors. Also, proteins released from their bites have been known to induce anaphylaxis in sensitive and sensitized individuals.

<span class="mw-page-title-main">Waterborne diseases</span> Diseases caused by pathogenic microorganisms transmitted by waters

Waterborne diseases are conditions caused by pathogenic micro-organisms that are transmitted by water. These diseases can be spread while bathing, washing, drinking water, or by eating food exposed to contaminated water. They are a pressing issue in rural areas amongst developing countries all over the world. While diarrhea and vomiting are the most commonly reported symptoms of waterborne illness, other symptoms can include skin, ear, respiratory, or eye problems. Lack of clean water supply, sanitation and hygiene (WASH) are major causes for the spread of waterborne diseases in a community. Therefore, reliable access to clean drinking water and sanitation is the main method to prevent waterborne diseases.

<i>Culex</i> Genus of mosquitoes

Culex or typical mosquitoes are a genus of mosquitoes, several species of which serve as vectors of one or more important diseases of birds, humans, and other animals. The diseases they vector include arbovirus infections such as West Nile virus, Japanese encephalitis, or St. Louis encephalitis, but also filariasis and avian malaria. They occur worldwide except for the extreme northern parts of the temperate zone, and are the most common form of mosquito encountered in some major U.S. cities, such as Los Angeles.

Paratransgenesis is a technique that attempts to eliminate a pathogen from vector populations through transgenesis of a symbiont of the vector. The goal of this technique is to control vector-borne diseases. The first step is to identify proteins that prevent the vector species from transmitting the pathogen. The genes coding for these proteins are then introduced into the symbiont, so that they can be expressed in the vector. The final step in the strategy is to introduce these transgenic symbionts into vector populations in the wild. One use of this technique is to prevent mortality for humans from insect-borne diseases. Preventive methods and current controls against vector-borne diseases depend on insecticides, even though some mosquito breeds may be resistant to them. There are other ways to fully eliminate them. “Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit.” The acidic bacteria Asaia symbionts are beneficial in the normal development of mosquito larvae; however, it is unknown what Asais symbionts do to adult mosquitoes.

A canine vector-borne disease (CVBD) is one of "a group of globally distributed and rapidly spreading illnesses that are caused by a range of pathogens transmitted by arthropods including ticks, fleas, mosquitoes and phlebotomine sandflies." CVBDs are important in the fields of veterinary medicine, animal welfare, and public health. Some CVBDs are of zoonotic concern.

<span class="mw-page-title-main">Medical entomology</span> Study of insect impacts on human health

The discipline of medical entomology, or public health entomology, and also veterinary entomology is focused upon insects and arthropods that impact human health. Veterinary entomology is included in this category, because many animal diseases can "jump species" and become a human health threat, for example, bovine encephalitis. Medical entomology also includes scientific research on the behavior, ecology, and epidemiology of arthropod disease vectors, and involves a tremendous outreach to the public, including local and state officials and other stake holders in the interest of public safety.

<span class="mw-page-title-main">Avian malaria</span> Parasitic disease of birds

Avian malaria is a parasitic disease of birds, caused by parasite species belonging to the genera Plasmodium and Hemoproteus. The disease is transmitted by a dipteran vector including mosquitoes in the case of Plasmodium parasites and biting midges for Hemoproteus. The range of symptoms and effects of the parasite on its bird hosts is very wide, from asymptomatic cases to drastic population declines due to the disease, as is the case of the Hawaiian honeycreepers. The diversity of parasites is large, as it is estimated that there are approximately as many parasites as there are species of hosts. As research on human malaria parasites became difficult, Dr. Ross studied avian malaria parasites. Co-speciation and host switching events have contributed to the broad range of hosts that these parasites can infect, causing avian malaria to be a widespread global disease, found everywhere except Antarctica.

A reverse zoonosis, also known as a zooanthroponosis or anthroponosis, is a pathogen reservoired in humans that is capable of being transmitted to non-human animals.

<span class="mw-page-title-main">Protozoan infection</span> Parasitic disease caused by a protozoan

Protozoan infections are parasitic diseases caused by organisms formerly classified in the kingdom Protozoa. These organisms are now classified in the supergroups Excavata, Amoebozoa, Harosa, and Archaeplastida. They are usually contracted by either an insect vector or by contact with an infected substance or surface.

<span class="mw-page-title-main">Mosquito-borne disease</span> Diseases caused by bacteria, viruses or parasites transmitted by mosquitoes

Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people get a mosquito-borne illness each year, resulting in over 725,000 deaths.

<span class="mw-page-title-main">Hematophagy</span> Ecological niche involving feeding on blood

Hematophagy is the practice by certain animals of feeding on blood. Since blood is a fluid tissue rich in nutritious proteins and lipids that can be taken without great effort, hematophagy is a preferred form of feeding for many small animals, such as worms and arthropods. Some intestinal nematodes, such as Ancylostomatids, feed on blood extracted from the capillaries of the gut, and about 75 percent of all species of leeches are hematophagous. The spider Evarcha culicivora feeds indirectly on vertebrate blood by specializing on blood-filled female mosquitoes as their preferred prey. Some fish, such as lampreys and candirus; mammals, especially vampire bats; and birds, including the vampire finch, Hood mockingbird, Tristan thrush, and oxpeckers, also practise hematophagy.

<i>Triatoma gerstaeckeri</i> Species of true bug

Triatoma gerstaeckeri is an assassin bug in the genus Triatoma. It is an important vector of Trypanosoma cruzi, the causative agent of Chagas disease. The range of T. gerstaeckeri is from the south-western United States to north-eastern Mexico. T. gerstaeckeri goes through three stages during its paurometabolous life cycle: egg, nymphal instars and adult.

Jamestown Canyon encephalitis is an infectious disease caused by the Jamestown Canyon virus, an orthobunyavirus of the California serogroup. It is mainly spread during the summer by different mosquito species in the United States and Canada.

Disease ecology is a sub-discipline of ecology concerned with the mechanisms, patterns, and effects of host-pathogen interactions, particularly those of infectious diseases. For example, it examines how parasites spread through and influence wildlife populations and communities. By studying the flow of diseases within the natural environment, scientists seek to better understand how changes within our environment can shape how pathogens, and other diseases, travel. Therefore, diseases ecology seeks to understand the links between ecological interactions and disease evolution. New emerging and re-emerging infectious diseases are increasing at unprecedented rates which can have lasting impacts on public health, ecosystem health, and biodiversity.

<span class="mw-page-title-main">Climate change and infectious diseases</span> Overview of the relationship between climate change and infectious diseases

Global climate change has increased the occurrence of some infectious diseases. Infectious diseases whose transmission is impacted by climate change include, for example, vector-borne diseases like dengue fever, malaria, tick-borne diseases, leishmaniasis, zika fever, chikungunya and Ebola. One mechanism contributing to increased disease transmission is that climate change is altering the geographic range and seasonality of the insects that can carry the diseases. Scientists stated a clear observation in 2022: "the occurrence of climate-related food-borne and waterborne diseases has increased ."

References

  1. "Vector-borne diseases".
  2. "Vector". WordNet Search 3.1. Princeton University . Retrieved 7 April 2014.
  3. Last, James, ed. (2001). A Dictionary of Epidemiology. New York: Oxford University Press. p. 185. ISBN   978-0-19-514169-6. OCLC   207797812.
  4. Prevention, CDC-Centers for Disease Control and (2017-03-28). "CDC - Malaria - About Malaria - History - Ross and the Discovery that Mosquitoes Transmit Malaria Parasites". www.cdc.gov. Retrieved 2020-10-23.
  5. "Classification of Animal Parasites". plpnemweb.ucdavis.edu. Archived from the original on 2017-10-06. Retrieved 2016-02-25.
  6. Garcia, Lynne S. (August 15, 1999). "Classification of Human Parasites, Vectors, and Similar Organisms". Clinical Infectious Diseases . 29 (4): 734–736. doi: 10.1086/520425 . PMID   10589879.
  7. "8.20D: Arthropods as Vectors". 23 June 2017.
  8. "PEOI Foundations of Public Health".
  9. "CDC - Chagas Disease - Detailed Fact Sheet". 11 April 2022.
  10. "Coronavirus disease 2019 (COVID-19) from Mayo Clinic - Mayo Clinic". Mayo Clinic .
  11. "CDC - Chagas Disease - General Information". 13 April 2022.
  12. "Chagas disease".
  13. "Thripidae - an overview | ScienceDirect Topics".
  14. "Thysanoptera - an overview | ScienceDirect Topics".
  15. 1 2 R. S. Mehrotra (2013). Fundamentals of Plant Pathology. Tata McGraw-Hill Education. pp. 342–. ISBN   978-1-259-02955-4.
  16. Peter W. Price (1980). Evolutionary Biology of Parasites. Princeton University Press. pp. 61–. ISBN   0-691-08257-X.
  17. Haynes, A R. et al. Comparison of two parasitic vines: Dodder (Cuscuta) and Woe vine(Cassytha). Florida Dept Agric & Consumer Services. Division of Plant Industry. Botany Circular No. 30. January/February 1996
  18. "Raccoons and public health". The Humane Society of the United States . Retrieved 2022-04-01.
  19. 1 2 Purlain, Ted (5 December 2012). "Lancet addresses emerging infectious vector-borne diseases". Vaccine News Daily. Chicago, Illinois. Retrieved 7 April 2014.
  20. 1 2 University of California - Santa Cruz (30 November 2012). "Emerging vector-borne diseases create new public health challenges". Science Daily . Rockville, Maryland . Retrieved 7 April 2014.
  21. "Handbook for Integrated Vector Management" (PDF). World Health Organization . Retrieved 3 December 2015.
  22. 1 2 "Vector-borne disease". The Health and Environment Linkages Initiative (HELI). Geneva, Switzerland: World Health Organization. Retrieved 7 April 2014.
  23. Parrish, Ryan (7 April 2014). "WHO focuses on vector-borne diseases for World Health Day 2014". Vaccine News Daily. Chicago, Illinois . Retrieved 7 April 2014.
  24. "Vector-borne diseases". www.who.int. Retrieved 2023-03-31.
  25. Qureshi, Yasser M.; Voloshin, Vitaly; Facchinelli, Luca; McCall, Philip J.; Chervova, Olga; Towers, Cathy E.; Covington, James A.; Towers, David P. (2023-03-21). "Finding a Husband: Using Explainable AI to Define Male Mosquito Flight Differences". Biology. 12 (4): 496. doi: 10.3390/biology12040496 . ISSN   2079-7737. PMC   10135534 . PMID   37106697.