Full-spectrum photography

Last updated
A full spectrum photograph of an old homestead in Montana UV-Vis-IR Homestead in Montana.jpg
A full spectrum photograph of an old homestead in Montana
Full Spectrum Geo-Referenced Orthomosaic (RGB+NIR) obtained with an UAV Full Spectrum Geo-Referenced Orthomosaic (RGB+NIR).JPG
Full Spectrum Geo-Referenced Orthomosaic (RGB+NIR) obtained with an UAV

Full-spectrum photography is a subset of multispectral imaging, defined among photography enthusiasts as imaging with consumer cameras the full, broad spectrum of a film or camera sensor bandwidth. In practice, specialized broadband/full-spectrum film captures visible and near infrared light, commonly referred to as the "VNIR". [1]

Contents

Modified digital cameras can detect some ultraviolet, all of the visible and much of the near infrared spectrum, as most digital imaging sensors are sensitive from about 350 nm to 1000 nm. An off-the-shelf digital camera contains an infrared hot mirror filter that blocks most of the infrared and a bit of the ultraviolet that would otherwise be detected by the sensor, narrowing the accepted range from about 400 nm to 700 nm. Replacing a hot mirror or infrared blocking filter with an infrared pass or a wide spectrally transmitting filter allows the camera to detect the wider spectrum light at greater sensitivity. Without the hot-mirror, the red, green and blue (or cyan, yellow and magenta) elements of the color filter array placed over the sensor elements pass varying amounts of ultraviolet and infrared which may be recorded in any of the red, green or blue channels depending on the particular sensor in use and on the dyes used in the Bayer filter. A converted full-spectrum camera can be used for ultraviolet photography or infrared photography with the appropriate filters.

Uses of full-spectrum photography include fine art photography, geology, forensics & law enforcement, and even some claimed use in ghost hunting.

History

Full-spectrum photography has its roots in spectral imaging, both multispectral and hyperspectral imaging, which began as early as the late 1950s and early 1960s as means for geological and military remote sensing. Wideband panchromatic film has been available in various forms since the 1920s, when some UV and IR sensitivity remained in commercially available emulsions. The earliest color films sometimes included wider band color than recent commercial photographic emulsions, and can be recognized by the more reddish and or limited color tones of early color prints (not to be confused with print fading).

In the late 1990s enthusiastic photographers began shooting infrared with digital cameras, necessitating either long exposures or the removal of the internal hot mirror. Most replaced the hot mirror with an infrared pass filter of the same optical thickness (to retain focus) and pass only infrared light to achieve results seen with infrared B&W film. Around 2000, electro-optical engineer David Twede, already engaged in VNIR and infrared spectral remote sensing, ventured into Full-spectrum photography art, using a modified digital camera to explore broader spectral imaging and developing an artistic style using it. Around 2003, forensics photographers using engineered cameras for specific purposes began modifying off-the-shelf digital cameras to acquire less expensive tools. Full-spectrum photography is used by enthusiasts of ghost hunting, though no claims of actually photographing psychic phenomenon with Full-spectrum or infrared photography have been substantiated.

Today, there are a few places that will modify digital cameras to pass broad, full-spectrum light for full spectral imaging. A few DSLR cameras such as the Fujifilm FinePix IS Pro are purpose-designed for full spectrum use and respond from approximately 1000 nm (IR) to 380 nm (UV).

Basics

Comparison of images taken with different spectral responses. UV Vis IR Portrait.jpg
Comparison of images taken with different spectral responses.

Digital sensors and photographic films can be made to record non-visible ultraviolet (UV) and infrared (IR) radiation. In each case, they generally require special equipment: converted digital cameras, specific filters, highly transmitting lenses, etc. For example, most photographic lenses are made of glass and will filter out most ultraviolet light. Instead, expensive lenses made of quartz must be used. Infrared films may be shot in standard cameras using an infrared pass filters, although focus must compensate for the infrared focal point.

A converted digital camera usually requires that the infrared hot mirror be removed and replaced by a wideband, spectrally flat glass of the same optical path length. Typical glass types used include Schott WG-280 and BK-7, which transmit as much as 90% from around 300 nm to past 1000 nm. Removing the hot mirror is tedious and may require special tools and clean rooms. [2]

Once the camera is sensitive to the full-spectrum, external filters can be used to selectively filter portions of the UV, visible and infrared to achieve various effects. For example, a standard red #25a can be used to include red light and infrared light together, yielding particularly strong two-toned color images of a reddish nature except where the infrared is high and shows as cyan. Another example, using UV/IR filters such as the 18A or U-330 yield a two or three toned image in which blues and yellows dominate. Less common filters have been claimed to give a variety of color effects ranging from diverse pastel foliage and deep blue skies to surrealistic effects of the sky and ground, though digital image processing is likely required to achieve the full effects. One issue with full-spectrum photography in either film or digital photography is the chromatic aberration produced by the wideband information. That is, different spectra, including the ultraviolet and infrared, will focus at different focal points, yielding blurry images and color edge effects, depending on the focal length used. There are specialized lenses such as the Nikon 105mm f4.5 UV-Nikkor which are designed to eliminate this chromatic aberration.

It is important to note that while the converted camera sensor is capable of recording in both the ultraviolet and infrared region, when mixed light hits the sensor it will be the longer infrared waves that will predominate in the recording. Little or no shortwave ultraviolet light may be recorded unless selective filtering is applied to cut some or all of the infrared light. The longwave infrared light may also wash out a considerable amount of the visible light in the blue and green areas in a full spectrum photograph. Similarly if infrared light is entirely blocked, the visible light can overwhelm the recording of the ultraviolet light. So there is no truly full-spectrum photograph that can be made.

Full-spectrum photography achieves various effects and surrealistic colors from the interaction of reflectivity (UV, visible, IR) of nature and man made materials and the specific spectral transmission of the red, green and blue filters on the camera. The addition of external filters will reduce and emphasize different interactions, yielding different effects.

Applications

Art

Full-spectrum photography is being used for art photography and can yield colors similar to visible color film, but with a brightness and tonality of infrared photographs. Most full-spectrum art is of landscapes. A movement is also building for artistic human photography with full-spectrum photography, that captures a real person interacting with a surreal landscape. Full-spectrum photography art is displayed at galleries in Colorado and Florida.[ citation needed ]

Science hobbyists

Hyperspectral and most multispectral cameras are expensive and difficult to operate, requiring a computer acquisition and laborious post-processing. Modified digital cameras with the proper filtering avail some limited spectral sensing for geology/mineralogy, agriculture and oceanographic purposes. Most consumer cameras retain the red, green and blue micro-filters, thus limiting their usefulness in scientific imaging.

Forensics

Forensics imaging often uses Full-spectrum cameras to emphasize non-visible materials which have more diverse reflectivities in the ultraviolet and infrared. Applications include non-visible inks (uv & ir), disturbed soil (uv & ir), gunshot residue (ir), body fluids (uv), fibers, etc. Analogous to forensics, Full-spectrum cameras are being explored to enhance photographic recordings of archeological findings.

See also

Related Research Articles

<span class="mw-page-title-main">Infrared</span> Form of electromagnetic radiation

Infrared is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with waves that are just longer than those of red light, the longest waves in the visible spectrum, so IR is invisible to the human eye. IR is generally understood to include wavelengths from around 750 nm to 1000 μm. IR is commonly divided between longer-wavelength thermal IR, emitted from terrestrial sources, and shorter-wavelength IR or near-IR, part of the solar spectrum. Longer IR wavelengths (30–100 μm) are sometimes included as part of the terahertz radiation band. Almost all black-body radiation from objects near room temperature is in the IR band. As a form of electromagnetic radiation, IR carries energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon.

<span class="mw-page-title-main">Ultraviolet</span> Energetic, invisible light energy range

Ultraviolet (UV) light is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs; Cherenkov radiation; and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights.

<span class="mw-page-title-main">Visible spectrum</span> Portion of the electromagnetic spectrum that is visible to the human eye

The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light. The optical spectrum is sometimes considered to be the same as the visible spectrum, but some authors define the term more broadly, to include the ultraviolet and infrared parts of the electromagnetic spectrum as well, known collectively as optical radiation.

<span class="mw-page-title-main">Infrared cut-off filter</span> Optical filters that block near-infrared while passing visible light

Infrared cut-off filters, sometimes called IR filters or heat-absorbing filters, are designed to reflect or block near-infrared wavelengths while passing visible light. They are often used in devices with bright incandescent light bulbs to prevent unwanted heating. There are also filters which are used in solid state video cameras to block IR due to the high sensitivity of many camera sensors to near-infrared light. These filters typically have a blue hue to them as they also sometimes block some of the light from the longer red wavelengths.

<span class="mw-page-title-main">Photographic filter</span> Camera accessory consisting of an optical filter

In photography and cinematography, a filter is a camera accessory consisting of an optical filter that can be inserted into the optical path. The filter can be of a square or oblong shape and mounted in a holder accessory, or, more commonly, a glass or plastic disk in a metal or plastic ring frame, which can be screwed into the front of or clipped onto the camera lens.

<span class="mw-page-title-main">Optical filter</span> Filters which selectively transmit specific colors

An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.

<span class="mw-page-title-main">Infrared photography</span> Near-infrared imaging

In infrared photography, the photographic film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum.

<span class="mw-page-title-main">Multispectral imaging</span> Capturing image data across multiple electromagnetic spectrum ranges

Multispectral imaging captures image data within specific wavelength ranges across the electromagnetic spectrum. The wavelengths may be separated by filters or detected with the use of instruments that are sensitive to particular wavelengths, including light from frequencies beyond the visible light range, i.e. infrared and ultra-violet. It can allow extraction of additional information the human eye fails to capture with its visible receptors for red, green and blue. It was originally developed for military target identification and reconnaissance. Early space-based imaging platforms incorporated multispectral imaging technology to map details of the Earth related to coastal boundaries, vegetation, and landforms. Multispectral imaging has also found use in document and painting analysis.

Spectral imaging is imaging that uses multiple bands across the electromagnetic spectrum. While an ordinary camera captures light across three wavelength bands in the visible spectrum, red, green, and blue (RGB), spectral imaging encompasses a wide variety of techniques that go beyond RGB. Spectral imaging may use the infrared, the visible spectrum, the ultraviolet, x-rays, or some combination of the above. It may include the acquisition of image data in visible and non-visible bands simultaneously, illumination from outside the visible range, or the use of optical filters to capture a specific spectral range. It is also possible to capture hundreds of wavelength bands for each pixel in an image.

<span class="mw-page-title-main">Purple fringing</span> Type of chromatic aberration in photography

In photography, purple fringing is the term for an unfocused purple or magenta "ghost" image on a photograph. This optical aberration is generally most visible as a coloring and lightening of dark edges adjacent to bright areas of broad-spectrum illumination, such as daylight or various types of gas-discharge lamps.

<span class="mw-page-title-main">Hyperspectral imaging</span> Multi-wavelength imaging method

Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes. There are three general types of spectral imagers. There are push broom scanners and the related whisk broom scanners, which read images over time, band sequential scanners, which acquire images of an area at different wavelengths, and snapshot hyperspectral imagers, which uses a staring array to generate an image in an instant.

<span class="mw-page-title-main">Ultraviolet photography</span> Photographic process using UV radiation

Ultraviolet photography is a photographic process of recording images by using radiation from the ultraviolet (UV) spectrum only. Images taken with ultraviolet radiation serve a number of scientific, medical or artistic purposes. Images may reveal deterioration of art works or structures not apparent under light. Diagnostic medical images may be used to detect certain skin disorders or as evidence of injury. Some animals, particularly insects, use ultraviolet wavelengths for vision; ultraviolet photography can help investigate the markings of plants that attract insects, while invisible to the unaided human eye. Ultraviolet photography of archaeological sites may reveal artifacts or traffic patterns not otherwise visible.

<span class="mw-page-title-main">Imaging spectrometer</span>

An imaging spectrometer is an instrument used in hyperspectral imaging and imaging spectroscopy to acquire a spectrally-resolved image of an object or scene, usually to support analysis of the composition the object being imaged. The spectral data produced for a pixel is often referred to as a datacube due to the three-dimensional representation of the data. Two axes of the image correspond to vertical and horizontal distance and the third to wavelength. The principle of operation is the same as that of the simple spectrometer, but special care is taken to avoid optical aberrations for better image quality.

Chemical imaging is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures contiguous spectral bands, as opposed to multispectral imaging which measures spaced spectral bands.

<span class="mw-page-title-main">Airborne Real-time Cueing Hyperspectral Enhanced Reconnaissance</span> Aerial imaging system

Airborne Real-time Cueing Hyperspectral Enhanced Reconnaissance, also known by the acronym ARCHER, is an aerial imaging system that produces ground images far more detailed than plain sight or ordinary aerial photography can. It is the most sophisticated unclassified hyperspectral imaging system available, according to U.S. Government officials. ARCHER can automatically scan detailed imaging for a given signature of the object being sought, for abnormalities in the surrounding area, or for changes from previous recorded spectral signatures.

Electro-optical MASINT is a subdiscipline of Measurement and Signature Intelligence, (MASINT) and refers to intelligence gathering activities which bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).

<span class="mw-page-title-main">VNIR</span> Portion of the electromagnetic spectrum between 400–1100 nm

The visible and near-infrared (VNIR) portion of the electromagnetic spectrum has wavelengths between approximately 400 and 1100 nanometers (nm). It combines the full visible spectrum with an adjacent portion of the infrared spectrum up to the water absorption band between 1400 and 1500 nm. Some definitions also include the short-wavelength infrared band from 1400 nm up to the water absorption band at 2500 nm. VNIR multi-spectral image cameras have wide applications in remote sensing and imaging spectroscopy. Hyperspectral Imaging Satellite carried two payloads, among which one was working on the spectral range of VNIR.

A flame detector is a sensor designed to detect and respond to the presence of a flame or fire, allowing flame detection. Responses to a detected flame depend on the installation, but can include sounding an alarm, deactivating a fuel line, and activating a fire suppression system. When used in applications such as industrial furnaces, their role is to provide confirmation that the furnace is working properly; it can be used to turn off the ignition system though in many cases they take no direct action beyond notifying the operator or control system. A flame detector can often respond faster and more accurately than a smoke or heat detector due to the mechanisms it uses to detect the flame.

<span class="mw-page-title-main">FinePix IS Pro</span> Digital single lens reflex camera

The FinePix IS Pro is a digital single lens reflex camera introduced by Fujifilm in 2007. It is based on a FinePix S5 Pro, which is in turn based on the Nikon D200. It has a Nikon F lens mount and can use most lenses made for 35 mm Nikon SLR cameras. It replaces the Fujifilm FinePix S3 Pro UVIR.

<span class="mw-page-title-main">Spectroradiometry for Earth and planetary remote sensing</span>

Spectroradiometry is a technique in Earth and planetary remote sensing, which makes use of light behaviour, specifically how light energy is reflected, emitted, and scattered by substances, to explore their properties in the electromagnetic (light) spectrum and identify or differentiate between them. The interaction between light radiation and the surface of a given material determines the manner in which the radiation reflects back to a detector, i.e., a spectroradiometer. Combining the elements of spectroscopy and radiometry, spectroradiometry carries out precise measurements of electromagnetic radiation and associated parameters within different wavelength ranges. This technique forms the basis of multi- and hyperspectral imaging and reflectance spectroscopy, commonly applied across numerous geoscience disciplines, which evaluates the spectral properties exhibited by various materials found on Earth and planetary bodies.

References

  1. , Definition of VNIR.
  2. , Tedious instructions on modifying a Nikon D50.