Katherine Johnson Independent Verification and Validation Facility

Last updated
Katherine Johnson Independent Verification and Validation Facility
KatherineJohnsonIVV.jpg
The main entrance to NASA's IV&V Program.
Agency overview
Formed1993
Headquarters Fairmont, West Virginia
Employees270
Agency executive
  • Wes Deadrick, Director
Parent agency NASA, Goddard Space Flight Center, Office of Safety and Mission Assurance
Website nasa.gov/katherine-johnson-ivv-facility/

NASA's Independent Verification & Validation (IV&V) Program was established in 1993 as part of an agency-wide strategy to provide the highest achievable levels of safety and cost-effectiveness for mission critical software. NASA's IV&V Program was founded under the NASA Office of Safety and Mission Assurance (OSMA) as a direct result of recommendations made by the National Research Council (NRC) and the Report of the Presidential Commission on the Space Shuttle Challenger disaster. [1] Since then, NASA's IV&V Program has experienced growth in personnel, projects, capabilities, and accomplishments. NASA IV&V efforts have contributed to NASA's improved safety record since the program's inception. Today, Independent Verification and Validation (IV&V) is an Agency-level function, delegated from OSMA to Goddard Space Flight Center (GSFC) and managed by NASA IV&V. NASA's IV&V Program's primary business, software IV&V, is sponsored by OSMA as a software assurance technology. Having been reassigned as GSFC, NASA IV&V is Code 180 (Center Director's direct report).

Contents

NASA's IV&V Program houses approximately 270 employees and leverages the expertise of in-house partners and contractors. Its facilities are located in Fairmont, West Virginia. In the summer, high school and college interns are employed in addition.

On February 22, 2019, the facility was renamed to the Katherine Johnson Independent Verification and Validation Facility in honor of Katherine Johnson, an African-American woman who worked as a mathematician at NASA for 35 years and who is featured in the 2016 film Hidden Figures . [2]

IV&V's Mission

The IV&V Program's mission is to provide customers assurance that their safety and mission critical systems and software will operate reliably, safely and securely, and to advance the systems and software engineering disciplines. In doing so, the Program works to standards of excellence, focuses on customer satisfaction, inspires and advances the next generation, and adhere to and demonstrate a core set of values: safety, integrity, respect, inclusion, teamwork, balance, innovation and excellence. [3]

Affiliations

NASA's IV&V Program is affiliated with NASA Goddard Space Flight Center (GSFC) and the Educator Resource Center (ERC), funded through a partnership with Fairmont State University, is part of a nationwide network of training sites at NASA centers and facilities.

Projects

NASA's IV&V Program is the lead NASA organization for system software IV&V, and is responsible for the management of all system software IV&V efforts within the Agency. NASA's IV&V Program's role is to provide value-added service to the Agency's system software projects, primarily by appropriately performing IV&V on system software based on the cost, size, complexity, life span, risk, and consequences of failure. [4]

Current IV&V Projects:  NASA’s IV&V Program is currently performing IV&V for the projects listed below

Independent Technical Assessments of NASA Systems

NASA's IV&V Program also provides independent technical assessments of NASA systems and software processes/products to identify developmental and operational risks. This effort helps to provide assurance that safe and reliable software is being provided to NASA missions and projects as they work toward successful systems and software development. Independent assessments can address any aspect of software engineering and can be applied within any SDLC phase. This capability provides for multiple spot-checking throughout the SDLC and addresses those issues that can jeopardize mission safety and quality.

Simulation-to-Flight 1 (STF-1)

The IV&V Program previous worked on the Simulation-to-Flight 1 (STF-1) [5] , which was West Virginia’s first CubeSat, or small satellite. It was built under NASA’s CubeSat Launch Initiative, where potential launch opportunities are provided to select CubeSat proposals from NASA Centers, accredited US educational or non-profit organizations. NASA's main goal in this initiative was to provide CubeSat developers access to a low-cost pathway to conduct research in the areas of science, exploration, technology development, education or operations.

STF-1 launched into Low Earth orbit on a Rocket Lab Electron rocket on December 16, 2018. [6] STF-1 is orbiting Earth in LEO and operating nominally.

The fully assembled STF-1 CubeSat. STF-1 CubeSat.jpg
The fully assembled STF-1 CubeSat.

Jon McBride Software Testing and Research (JSTAR)

Jon McBride Software Testing and Research (JSTAR) is a subgroup within the NASA IV&V Program’s IV&V office. It is named for West Virginian Astronaut Jon McBride. JSTAR’s main role consists of providing computer simulations of embedded spacecraft environments. These simulations allow spacecraft software to be tested, verified, and validated. JSTAR performs research and developmental efforts in order to improve testing methods and is also responsible for managing and enhancing the JSTAR laboratory network.

Education Resource Center

Thanks to a grant with Fairmont State University, the Education Resource Center (ERC) provides resources and training opportunities for approximately 1,000 in-service, pre-service, and informal educators and in West Virginia annually. The materials and training cover a wide range of science, technology, engineering, and mathematics (STEM) topics. The ERC also loans hands-on STEM kits to trained teachers which impact over 10,000 students per year in the state. The on-site student outreach program brings over 2,000 youth to the facility annually to experience workshops on robotics, rocketry, aviation, and other STEM topics. The ERC also runs numerous student STEM competitions in the fields of robotics and aviation. Starting in 2012, the ERC became the partner for the FIRST LEGO League competition and has overseen a rapid growth in robotic competitions and West Virginia Robotics Alliance.

See also

Related Research Articles

<span class="mw-page-title-main">Space exploration</span> Exploration of space, planets, and moons

Space exploration is the use of astronomy and space technology to explore outer space. While the exploration of space is currently carried out mainly by astronomers with telescopes, its physical exploration is conducted both by uncrewed robotic space probes and human spaceflight. Space exploration, like its classical form astronomy, is one of the main sources for space science.

<span class="mw-page-title-main">Exploration of Mars</span>

The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions, with some failing before their observations could begin. Some missions have been met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity, which operated for years beyond their specification.

<span class="mw-page-title-main">Constellation program</span> Cancelled 2005–2010 NASA human spaceflight program

The Constellation program was a crewed spaceflight program developed by NASA, the space agency of the United States, from 2005 to 2009. The major goals of the program were "completion of the International Space Station" and a "return to the Moon no later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The program's logo reflected the three stages of the program: the Earth (ISS), the Moon, and finally Mars—while the Mars goal also found expression in the name given to the program's booster rockets: Ares. The technological aims of the program included the regaining of significant astronaut experience beyond low Earth orbit and the development of technologies necessary to enable sustained human presence on other planetary bodies.

<span class="mw-page-title-main">NASA</span> American space and aeronautics agency

The National Aeronautics and Space Administration is an independent agency of the U.S. federal government responsible for the civil space program, aeronautics research, and space research. Established in 1958, it succeeded the National Advisory Committee for Aeronautics (NACA) to give the U.S. space development effort a distinct civilian orientation, emphasizing peaceful applications in space science. It has since led most of America's space exploration programs, including Project Mercury, Project Gemini, the 1968–1972 Apollo Moon landing missions, the Skylab space station, and the Space Shuttle. Currently, NASA supports the International Space Station (ISS) along with the Commercial Crew Program, and oversees the development of the Orion spacecraft and the Space Launch System for the lunar Artemis program.

<span class="mw-page-title-main">Artemis I</span> 2022 uncrewed Moon-orbiting NASA mission

Artemis I, formerly Exploration Mission-1 (EM-1), was an uncrewed Moon-orbiting mission that was launched in November 2022. As the first major spaceflight of NASA's Artemis program, Artemis I marked the agency's return to lunar exploration after the conclusion of the Apollo program five decades earlier. It was the first integrated flight test of the Orion spacecraft and Space Launch System (SLS) rocket, and its main objective was to test the Orion spacecraft, especially its heat shield, in preparation for subsequent Artemis missions. These missions seek to reestablish a human presence on the Moon and demonstrate technologies and business approaches needed for future scientific studies, including exploration of Mars.

<span class="mw-page-title-main">Artemis II</span> Artemis programs second lunar flight

Artemis II is a scheduled mission of the NASA-led Artemis program. It will use the second launch of the Space Launch System (SLS) rocket and include the first crewed mission of the Orion spacecraft. The mission is scheduled for no earlier than September 2025. Four astronauts will perform a flyby of the Moon and return to Earth, becoming the first crew to travel beyond low Earth orbit since Apollo 17 in 1972. Artemis II will be the first crewed launch from Launch Complex 39B of the Kennedy Space Center since STS-116 in 2006.

<span class="mw-page-title-main">Lunar Flashlight</span> Lunar orbiter by NASA

Lunar Flashlight was a low-cost CubeSat lunar orbiter mission to explore, locate, and estimate size and composition of water ice deposits on the Moon for future exploitation by robots or humans.

<span class="mw-page-title-main">Lunar IceCube</span> Nanosatellite launched in 2022

Lunar IceCube is a NASA nanosatellite orbiter mission that was intended to prospect, locate, and estimate amount and composition of water ice deposits on the Moon for future exploitation. It was launched as a secondary payload mission on Artemis 1, the first flight of the Space Launch System (SLS), on 16 November 2022. As of February 2023 it is unknown whether NASA team has contact with satellite or not.

<span class="mw-page-title-main">LunIR</span> Spacecraft

LunIR is a nanosatellite spacecraft launched to the Moon collecting surface spectroscopy and thermography. It was launched as a secondary payload on the Artemis 1 mission on 16 November 2022.

<span class="mw-page-title-main">Lunar Polar Hydrogen Mapper</span> US Moon-orbiting ice-finding satellite

Lunar Polar Hydrogen Mapper, or LunaH-Map, was one of the 10 CubeSats launched with Artemis 1 on 16 November 2022. Along with Lunar IceCube and LunIR, LunaH-Map will help investigate the possible presence of water-ice on the Moon. Arizona State University began development of LunaH-Map after being awarded a contract by NASA in early 2015. The development team consisted of about 20 professionals and students led by Craig Hardgrove, the principal investigator. The mission is a part of NASA's SIMPLEx program.

<span class="mw-page-title-main">Artemis III</span> Third orbital flight of the Artemis program

Artemis III is planned to be the first crewed Moon landing mission of the Artemis program and the first crewed flight of the Starship HLS lander. Artemis III is planned to be the second crewed Artemis mission and the first American crewed lunar landing since Apollo 17 in December 1972. In December 2023, the Government Accountability Office reported that the mission is not likely to occur before 2027; as of January 2024, NASA officially expects Artemis III to launch no earlier than September 2026 due to issues with the valves in Orion's life support system.

<span class="mw-page-title-main">Lunar Gateway</span> Lunar orbital space station under development

The Lunar Gateway, or simply Gateway, is a space station which is planned to be assembled in orbit around the Moon. The Gateway is intended to serve as a communication hub, science laboratory, and habitation module for astronauts as part of the Artemis program. It is a multinational collaborative project: participants include NASA, the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA), and the Mohammed Bin Rashid Space Centre (MBRSC). The Gateway is planned to be the first space station beyond low Earth orbit.

<i>ArgoMoon</i> Nanosatellite

ArgoMoon is a CubeSat that was launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022 at 06:47:44 UTC. The objective of the ArgoMoon spacecraft is to take detailed images of the Interim Cryogenic Propulsion Stage following Orion separation, an operation that will demonstrate the ability of a cubesat to conduct precise proximity maneuvers in deep space. ASI has not confirmed nor denied whether this took place, but several images of the Earth and the Moon were taken.

<span class="mw-page-title-main">EQUULEUS</span> Japanese nanosatellite

EQUULEUS is a nanosatellite of the 6U CubeSat format that will measure the distribution of plasma that surrounds the Earth (plasmasphere) to help scientists understand the radiation environment in that region. It will also demonstrate low-thrust trajectory control techniques, such as multiple lunar flybys, within the Earth-Moon region using water steam as propellant. The spacecraft was designed and developed jointly by the Japan Aerospace Exploration Agency (JAXA) and the University of Tokyo.

<span class="mw-page-title-main">Simulation-to-Flight 1</span> Microsatellite

Simulation-to-Flight 1 (STF-1) is a microsatellite built by the Katherine Johnson Independent Verification and Validation Facility (IV&V) in Fairmont, West Virginia with the collaboration of the West Virginia Space Grants Consortium and West Virginia University.

<span class="mw-page-title-main">Artemis program</span> NASA-led lunar exploration program

The Artemis program is a Moon exploration program led by the United States' National Aeronautics and Space Administration (NASA), formally established in 2017 via Space Policy Directive 1. It is intended to reestablish a human presence on the Moon for the first time since the Apollo 17 mission in 1972. The program's stated long-term goal is to establish a permanent base on the Moon to facilitate human missions to Mars.

<span class="mw-page-title-main">Starship HLS</span> Lunar lander variant of SpaceX Starship

Starship HLS is a lunar lander variant of the Starship spacecraft that is slated to transfer astronauts from a lunar orbit to the surface of the Moon and back. It is being designed and built by SpaceX under the Human Landing System contract to NASA as a critical element of NASA's Artemis program to land a crew on the Moon.

References

  1. NASA history
  2. Cook, Gina (23 February 2019). "NASA Honors 'Hidden Figure' Katherine Johnson". NBC4 Washington. Retrieved 25 February 2019.
  3. "IV&V's Mission and Values - NASA" . Retrieved 2024-11-20.
  4. "Current IV&V Projects - NASA" . Retrieved 2024-11-20.
  5. "Simulation To Flight 1". National Aeronautics and Space Administration. NASA. Retrieved 24 March 2019.
  6. "NASA Sends CubeSats to Space on First Dedicated Launch with US Partner Rocket Lab". National Aeronautics and Space Administration. NASA. Retrieved 24 March 2019.

39°25′48″N80°11′52″W / 39.43000°N 80.19778°W / 39.43000; -80.19778