Space Power Facility

Last updated
NASA's Space Power Facility with RATF shown closest, then MVF and the modal plate, then the Thermo-Vac chamber NASA's Space Power Facility.jpg
NASA's Space Power Facility with RATF shown closest, then MVF and the modal plate, then the Thermo-Vac chamber

Space Power Facility (SPF) is a NASA facility used to test spaceflight hardware under simulated launch and spaceflight conditions. The SPF is part of NASA's Neil A. Armstrong Test Facility, which in turn is part of the Glenn Research Center. The Neil A. Armstrong Test Facility and the SPF are located near Sandusky, Ohio (Oxford Township, Erie County, Ohio).

Contents

The SPF is able to simulate a spacecraft's launch environment, as well as in-space environments. NASA has developed these capabilities under one roof to optimize testing of spaceflight hardware while minimizing transportation issues. Space Power Facility has become a "One Stop Shop" to qualify flight hardware for crewed space flight. This facility provides the capability to perform the following environmental testing:

Thermal-Vacuum Test Chamber

The Space Power Facility (SPF) is a vacuum chamber built by NASA in 1969. It stands 122 feet (37 m) high and 100 feet (30 m) in diameter, enclosing a bullet-shaped space. It is the world's largest thermal vacuum chamber. It was originally commissioned for nuclear-electric power studies under vacuum conditions, but was later decommissioned. It was subsequently recommissioned for use in testing spacecraft propulsion systems. Recent uses include testing the airbag landing systems for the Mars Pathfinder and the Mars Exploration Rovers, Spirit and Opportunity, under simulated Mars atmospheric conditions.

The facility was designed and constructed to test both nuclear and non-nuclear space hardware in a simulated Low-Earth-Orbiting environment. Although the facility was designed for testing nuclear hardware, only non-nuclear tests have been performed throughout its history. Some of the test programs that have been performed at the facility include high-energy experiments, rocket-fairing separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

The facility can sustain a high vacuum (10−6 torr, 130 μPa); simulate solar radiation via a 4 MW quartz heat lamp array, solar spectrum by a 400 kW arc lamp, and cold environments (−320 °F (−195.6 °C)) with a variable geometry cryogenic cold shroud.

The facility is available on a full-cost reimbursable basis to government, universities, and the private sector.

Aluminum Test Chamber

The Aluminum Test Chamber is a vacuum-tight aluminum plate vessel that is 100 feet (30 m) in diameter and 122 feet (37 m) high. Designed for an external pressure of 2.5 psi (17 kPa) and internal pressure of 5 psi (34 kPa), the chamber is constructed of Type 5083 aluminum which is a clad on the interior surface with a 18 in (3.2 mm) thick type 3003 aluminum for corrosion resistance. This material was selected because of its low neutron absorption cross-section. The floor plate and vertical shell are 1 inch (25 mm) (total) thick, while the dome shell is 1+38 in (35 mm). Welded circumferentially to the exterior surface is aluminum structural T-section members that are 3 feet (0.9 m) deep and 2 feet (0.6 m) wide. The doors of the test chamber are 50 by 50 feet (15 by 15 m) in size and have double door seals to prevent leakage. The chamber floor was designed for a load of 300 tons.

Concrete Chamber Enclosure

The concrete chamber enclosure serves not only as a radiological shield but also as a primary vacuum barrier from atmospheric pressure. 130 feet (40 m) in diameter and 150 feet (46 m) in height, the chamber was designed to withstand atmospheric pressure outside of the chamber at the same time vacuum conditions are occurring within. The concrete thickness varies from 6 to 8 feet (1.8 to 2.4 m) and contains a leak-tight steel containment barrier embedded within. The chamber's doors are 50 by 50 feet (15 by 15 m) and have inflatable seals. The space between the concrete enclosure and the aluminum test chamber is pumped down to a pressure of 20 torrs (2.7 kPa) during a test.

Brian Cox of the BBC's Human Universe filmed a rock and feather drop episode at the Space Power Facility. Below is a YouTube clip: Rock and Feather Drop at NASA's Space Power Facility

Electromagnetic Interference/Compatibility (EMI/EMC) functionality

Designed specifically as a large-scale thermal-vacuum test chamber for qualification testing of vehicles and equipment in outer-space conditions, it was discovered in the late 2000s that the unique construction of the SPF interior aluminum vacuum chamber also makes it an extremely large and electrically complex microwave or radio frequency cavity with excellent reverberant electro-magnetic characteristics. In 2009 these characteristics were measured by the National Institute of Standards and Technology and others [1] after which the facility was understood to be, not only the world's largest Vacuum chamber, but also the world's largest EMI/EMC test facility. In 2011, the Glenn Research Center successfully performed a calibration of the aluminum vacuum chamber [2] using IEC 61000-4-21 methodologies. [3] As a result of these activities, the SPF is capable of performing radiated susceptibility EMI tests for vehicles and equipment per MIL-STD-461 and able to achieve MIL-STD-461F limits above approximately 80 MHz. In the spring of 2017 the low-power characterizations and calibrations from 2009 and 2011 were proven correct in a series of high-power tests performed in the chamber to validate its capabilities. The SPF chamber is currently being prepared for EMI radiated susceptibility testing of the crew module for the Artemis 1 of NASA's Orion spacecraft.

Reverberant Acoustic Test Facility

The Reverberant Acoustic Test Facility has 36 nitrogen-driven horns to simulate the high noise levels that will be experienced during a space vehicle launch and supersonic ascent conditions. The RATF is capable of an overall sound pressure level of 163 dB within a 101,500-cubic-foot (2,870 m3) chamber.

Mechanical Vibration Test Facility

NASA's MVF Mechanical Vibration Facility Mechanical Vibration Facility.jpg
NASA's MVF Mechanical Vibration Facility

The Mechanical Vibration Test Facility (MVF), is a three-axis vibration system. It will apply vibration in each of the three orthogonal axes (not simultaneously) with one direction in parallel to the Earth-launch thrust axis (X) at 5–150 Hz, 0-1.25 g-pk vertical, and 5–150 Hz 0-1.0 g-pk for the horizontal axes. Vertical, or the thrust axis, shaking is accomplished by using 16 vertical actuators manufactured by TEAM Corporation, each capable of 30,000 lbf (130 kN). The 16 vertical actuators allow for testing of up to a 75,000 lb (34,000 kg) article at the previously stated frequency and amplitude limits. Horizontal shaking is accomplished through use of 4 TEAM Corporation Horizontal Actuators. The horizontal actuators are used during Vertical testing to counteract cross axis forces and overturning moments.

NASA's Space Power Facility Vibro-Acoustic Construction

In addition to the sine vibe table, a fixed-base Modal floor sufficient for the 20 ft (6.1 m) diameter test article is available. The fixed based Modal Test Facility is a 6 in (150 mm) thick steel floor on top of 19 ft (5.8 m) of concrete, that is tied to the earth using 50 ft (15 m) deep tensioned rock anchors.

There were over 21,000,000 pounds (9,500 t) of rock anchors, and 6,000,000 pounds (2,700 t) of concrete used in the construction of the fixed-base modal test facility and mechanical vibration test facility.

Assembly Area

The SPF Facility layout is ideal for performing multiple test programs. The facility has two large high bay areas adjacent to either side of the vacuum chamber. The advantage of having both areas available is that it allows for two complex tests to be prepared simultaneously. One test can be prepared in a high bay while another test is being conducted in the vacuum chamber. Large chamber doors provide access to the test chamber from either high bay.

NASA's Space Power Facility Vibro-Acoustic Construction

Related Research Articles

<span class="mw-page-title-main">Glenn Research Center</span> NASA research center in Ohio, US

NASA John H. Glenn Research Center at Lewis Field is a NASA center within the cities of Brook Park and Cleveland between Cleveland Hopkins International Airport and the Rocky River Reservation of Cleveland Metroparks, with a subsidiary facility in Sandusky, Ohio. Its director is James A. Kenyon. Glenn Research Center is one of ten major NASA facilities, whose primary mission is to develop science and technology for use in aeronautics and space. As of May 2012, it employed about 1,650 civil servants and 1,850 support contractors on or near its site.

<span class="mw-page-title-main">Vacuum chamber</span> Enclosure with very low air pressure used for experiments and testing

A vacuum chamber is a rigid enclosure from which air and other gases are removed by a vacuum pump. This results in a low-pressure environment within the chamber, commonly referred to as a vacuum. A vacuum environment allows researchers to conduct physical experiments or to test mechanical devices which must operate in outer space or for processes such as vacuum drying or vacuum coating. Chambers are typically made of metals which may or may not shield applied external magnetic fields depending on wall thickness, frequency, resistivity, and permeability of the material used. Only some materials are suitable for vacuum use.

<span class="mw-page-title-main">High Flux Isotope Reactor</span> Nuclear research reactor in Oak Ridge, Tennessee

The High Flux Isotope Reactor (HFIR) is a nuclear research reactor at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, United States. Operating at 85 MW, HFIR is one of the highest flux reactor-based sources of neutrons for condensed matter physics research in the United States, and it has one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into the fundamental properties of condensed matter. HFIR has about 600 users each year for both scattering and in-core research.

Vibration isolation is the prevention of transmission of vibration from one component of a system to others parts of the same system, as in buildings or mechanical systems. Vibration is undesirable in many domains, primarily engineered systems and habitable spaces, and methods have been developed to prevent the transfer of vibration to such systems. Vibrations propagate via mechanical waves and certain mechanical linkages conduct vibrations more efficiently than others. Passive vibration isolation makes use of materials and mechanical linkages that absorb and damp these mechanical waves. Active vibration isolation involves sensors and actuators that produce disruptive interference that cancels-out incoming vibration.

<span class="mw-page-title-main">Duct (flow)</span> Conduit used in heating, ventilation, and air conditioning

Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply air, return air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.

<span class="mw-page-title-main">Common Berthing Mechanism</span> Berthing mechanism used to connect ISS modules

The Common Berthing Mechanism (CBM) connects habitable elements in the US Orbital Segment (USOS) of the International Space Station (ISS). The CBM has two distinct sides that, once mated, form a cylindrical vestibule between modules. The vestibule is about 16 inches (0.4 m) long and 6 feet (1.8 m) across. At least one end of the vestibule is often limited in diameter by a smaller bulkhead penetration.

<span class="mw-page-title-main">Rocket engine test facility</span> Location where rocket engines may be tested on the ground, under controlled conditions

A rocket engine test facility is a location where rocket engines may be tested on the ground, under controlled conditions. A ground test program is generally required before the engine is certified for flight. Ground testing is very inexpensive in comparison to the cost of risking an entire mission or the lives of a flight crew.

<span class="mw-page-title-main">Ares I-X</span> Prototype and design concept demonstrator rocket

Ares I-X was the first-stage prototype and design concept demonstrator of Ares I, a launch system for human spaceflight developed by the National Aeronautics and Space Administration (NASA). Ares I-X was successfully launched on October 28, 2009. The project cost was $445 million. It was the final launch from LC-39B until Artemis 1 13 years later.

<span class="mw-page-title-main">Doak VZ-4</span> Type of aircraft

The Doak VZ-4 was an American prototype Vertical Takeoff and Landing (VTOL) aircraft built in the 1950s for service in the United States Army. Only a single prototype was built, and the U.S. Army withdrew it from active trials in 1963.

Statistical energy analysis (SEA) is a method for predicting the transmission of sound and vibration through complex structural acoustic systems. The method is particularly well suited for quick system level response predictions at the early design stage of a product, and for predicting responses at higher frequencies. In SEA a system is represented in terms of a number of coupled subsystems and a set of linear equations are derived that describe the input, storage, transmission and dissipation of energy within each subsystem. The parameters in the SEA equations are typically obtained by making certain statistical assumptions about the local dynamic properties of each subsystem (similar to assumptions made in room acoustics and statistical mechanics). These assumptions significantly simplify the analysis and make it possible to analyze the response of systems that are often too complex to analyze using other methods (such as finite element and boundary element methods).

The Cornell University Satellite (CUSat) is a nanosatellite developed by Cornell University that launched on 29 September 2013. It used a new algorithm called Carrier-phase Differential GPS (CDGPS) to calibrate global positioning systems to an accuracy of 3 millimeters. This technology can allow multiple spacecraft to travel in close proximity.

<span class="mw-page-title-main">Zero Gravity Research Facility</span> United States historic place

The Zero Gravity Research Facility at the NASA Glenn Research Center, in Cleveland, Ohio, is a unique facility designed to perform tests in a reduced gravity environment. It has successfully supported research for United States crewed spacecraft programs and numerous uncrewed projects. The facility uses vertical drop tests in a vacuum chamber to investigate the behavior of systems, components, liquids, gases, and combustion in microgravity.

<span class="mw-page-title-main">Space Environment Simulation Laboratory</span> United States historic place

The Space Environment Simulation Laboratory (SESL) is a facility in Building 32 at the Lyndon B. Johnson Space Center that can perform large-scale simulations of the vacuum and thermal environments that would be encountered in space. Built in 1965, it was initially used to test Apollo Program spacecraft and equipment in a space environment, and continues to be used by NASA for testing equipment. It was designated a National Historic Landmark in 1985.

<span class="mw-page-title-main">Thermal vacuum chamber</span>

A thermal vacuum chamber (TVAC) is a vacuum chamber in which the radiative thermal environment is controlled.

<span class="mw-page-title-main">Direct-field acoustic testing</span> Testing method

Direct-field acoustic testing, or DFAT, is a technique used for acoustic testing of aerospace structures by subjecting them to sound waves created by an array of acoustic drivers. The method uses electro-dynamic acoustic speakers, arranged around the test article to provide a uniform, well-controlled, direct sound field at the surface of the unit under test. The system employs high capability acoustic drivers, powerful audio amplifiers, a narrow-band multiple-input-multiple-output (MIMO) controller and precision laboratory microphones to produce an acoustic environment that can simulate a helicopter, aircraft, jet engine or launch vehicle sound pressure field. A high level system is capable of overall sound pressure levels in the 125–147 dB for more than one minute over a frequency range from 25 Hz to 10 kHz.

The Pennsylvania State University Applied Research Laboratory, is a specialized research unit dedicated to interdisciplinary scientific research at the Penn State, University Park campus. The ARL is a DoD designated U.S. Navy University Affiliated Research Center. It is the university's largest research unit with over 1,000 faculty and staff. The Laboratory ranks 2nd in DoD and 10th in NASA funding to universities.

Diffuse field acoustic testing is the testing of the mechanical resistance of a spacecraft to the acoustic pressures during launch.

ISRO Satellite Integration and Testing Establishment (ISITE) is an integrated satellite testing facility established under the aegis of ISRO Satellite Center by Indian Space Research Organisation in 2006. Started with an area of 1000 sq ft. at the time when the Aryabhatta satellite was launched, the testing facility is spread over 100-acre and can integrate and test six satellites of the INSAT class at different stages simultaneously: 2 communications, 2 remote sensing and 2 foreign satellites. The investment on the facility is so far about Rs 220 crore and ISRO plans to make a further investment of Rs 100 crore. The facility has also carried out vibration and acoustic tests of Mars Orbiter Mission (MOM) spacecraft.

<span class="mw-page-title-main">OTE Pathfinder</span>

The OTE Pathfinder, or James Webb Space Telescope Pathfinder, is a technology demonstrator and test article for the James Webb Space Telescope. It is a non-flight replica of the actual backplane, but only includes the center section, not the two "wings" on the side that extend and have additional segments on the actual JWST. It has been used for various tests and has some different configurations, but some of the major tests have been practicing installing mirror segments with non-flight hardware as well as thermal tests. The Pathfinder has also been tested in conjunction with flight hardware including the Aft Optics System. One of the goals and uses of the pathfinder is risk reduction for JWST program. The pathfinder allows practicing integration and testing procedures, and for risk mitigation With the Pathfinder it was possible to test phasing two mirrors together and also to do tests with the Aft Optical System. The OTE Pathfinder was part of the plan for integration and testing of JWST, and in particular supported the Optical Telescope Element.

<span class="mw-page-title-main">Space Launch System core stage</span> Main stage of the NASA Space Launch System rocket

The Space Launch System core stage, or simply core stage, is the main stage of the American Space Launch System (SLS) rocket, built by The Boeing Company in the NASA Michoud Assembly Facility. At 65 m (212 ft) tall and 8.4 m (27.6 ft) in diameter, the core stage contains approximately 987 t (2,177,000 lb) of its liquid hydrogen and liquid oxygen cryogenic propellants. Propelled by 4 RS-25 engines, the stage generates approximately 7.44 MN (1,670,000 lbf) of thrust, about 25% of the Space Launch System's thrust at liftoff, for approximately 500 seconds, propelling the stage alone for the last 375 seconds of flight. The stage lifts the rocket to an altitude of approximately 162 km (531,380 ft) before separating, reentering the atmosphere, and splashing down in the Pacific Ocean.

References