Kuehneotherium

Last updated

Kuehneotherium
Temporal range: Rhaetian-Hettangian
~206–199  Ma
Kuehneotherium molar terminology.png
Upper and lower molars of Kuehneotherium
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Clade: Cynodontia
Clade: Mammaliaformes
Family: Kuehneotheriidae
Genus: Kuehneotherium
D.M. Kermack et al., 1968
Type species
Kuehneotherium praecursoris
D.M. Kermack et al., 1968
Other species
  • K. stanislaviDebuysschere, 2017 [1]

Kuehneotherium is an early mammaliaform genus, previously considered a holothere, that lived during the Late Triassic-Early Jurassic Epochs and is characterized by reversed-triangle pattern of molar cusps. [2] Although many fossils have been found, the fossils are limited to teeth, dental fragments, and mandible fragments. The genus includes Kuehneotherium praecursoris and all related species. It was first named and described by Doris M. Kermack, K. A. Kermack, and Frances Mussett in November 1967. The family Kuehneotheriidae and the genus Kuehneotherium were created to house the single species Kuehneotherium praecursoris. Modeling based upon a comparison of the Kuehneotherium jaw with other mammaliaforms indicates it was about the size of a modern-day shrew between 4 and 5.5 g at adulthood.

Contents

Kuehneotherium is thought to be an insectivore that could consume only soft-bodied insects such as moths. Its teeth were shaped for vertical shearing and could not crush harder prey. It lived alongside another early mammaliaform, Morganucodon , which had teeth that could crush harder insects such as beetles. This distinction in diet shows that early mammaliaforms adapted to have separate feeding niches so they would not compete for food. [3] [4]

Species

Remains of Kuehneotherium praecursoris have been found in the Pontalun Quarry in a single fissure pocket in South Wales. The deposit found in limestone is from the Late Triassic. (Whiteside and Marshall 2008) Additional Kuehneotherium fossils have been found in rock formations of the Early Jurassic of Britain (Somerset), and the Late Triassic of France (Saint-Nicolas-de-Porte), Luxembourg, and Greenland; the Kuehneotherium specimens for Saint-Nicolas-de-Porte have been named K. stanislavi. [1]

Paleoenvironment

During the Late Triassic epoch the supercontinent Pangaea was intact, allowing easy interchange and migration of animals across the connected continents. This explains the wide distribution of Kuehneotherium fossils found throughout Greenland and Europe. When the continents began to rift apart during the Jurassic, shallow seas covered the British Isles, where Kuehneotherium was first found. Its remains were swept into limestone caves and fissures formed by the shallow seas and were preserved as fossils in clastic sediment.

The climate Kuehneotherium lived in was hot and dry during this part of the early Mesozoic. Conifer plants thrived and spread throughout Pangaea. As the continents rifted apart during the Early Jurassic the climate was more humid. Ferns, horsetails, cycads, and mosses were common in both the Triassic and Jurassic, however they were more prevalent in the more humid Jurassic period. [5]

Phylogeny

The phylogenetic position for Kuehneotherium has been widely debated. Kuehneotherium was once classified as a therian mammal (the common ancestor of marsupials, placentals, and their descendants). However, additional fossils of basal mammals have been found that predate the Kuehneotherium on the geological timescale and the relationships of early mammals were re-evaluated. Kuehneotherium is now placed in the more basal clade called Holotheria. Kuehneotherium preacursoris is the earliest mammal categorized as holotherian. Holotheria includes species in which the main and accessory molar cusps are arranged in a triangle. Kuehneotherium’s place in Holotheria is considered unstable, as it is difficult to determine a species characteristics based upon only mandible and dental fragments. [6]

Phylogeny (Zofia Kielan-Jaworowska et al., 2002)
Mammaliaformes  

Significance to the evolution of mammalian dentition

Study of the initial development of molar cusp triangulation in Kuehneotherium preacursoris was key in the early understanding of the transition between triconodont and crown therian molars.

Kuehneotherium dentition shows a significant link between mammaliaform triconodont shaped teeth used for in a puncture-crushing pattern, to modern crown therian molars that chew vertically and chew horizontally. [6] Therian mammals such as marsupials and placentals shared a common ancestor that was characterized by an upper molar with three main cusps arranged in a triangle that fits into the lower molar that has a reversed triangle and basin-like heel. Later discovery of the earlier more basal mammal Woutersia, provided additional information on this dental transition. [7] Kuehneotherium, like other mammals had two sets of teeth during its life. It is speculated that they may have had up to six lower molars with the last molar being added to the back later in life. The evidence for this is that the postcanine tooth row shifts backwards as the animal grew. They had 5-6 premolars; the first four premolars are single rooted. Anterior premolars would have been shed in late adulthood and not replaced. The lower jaw is a more basal morphology with a prominent postdentary groove where more developed postdentary bones would attach. The enamel microstructures of Kuehneotherium teeth were synapsid columnar enamel characterized by a pattern of columnar, prism-less structures. [8]

Metabolism

Alongside Morganucodon , Kuehneotherium appears to have had a lower metabolism than modern mammals, having a long lifespan. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Multituberculata</span> Extinct order of mammals

Multituberculata is an extinct order of rodent-like mammals with a fossil record spanning over 130 million years. They first appeared in the Middle Jurassic, and reached a peak diversity during the Late Cretaceous and Paleocene. They eventually declined from the mid-Paleocene onwards, disappearing from the known fossil record in the late Eocene. They are the most diverse order of Mesozoic mammals with more than 200 species known, ranging from mouse-sized to beaver-sized. These species occupied a diversity of ecological niches, ranging from burrow-dwelling to squirrel-like arborealism to jerboa-like hoppers. Multituberculates are usually placed as crown mammals outside either of the two main groups of living mammals—Theria, including placentals and marsupials, and Monotremata—but usually as closer to Theria than to monotremes. They are considered to be closely related to Euharamiyida and Gondwanatheria as part of Allotheria.

<span class="mw-page-title-main">Molar (tooth)</span> Large tooth at the back of the mouth

The molars or molar teeth are large, flat teeth at the back of the mouth. They are more developed in mammals. They are used primarily to grind food during chewing. The name molar derives from Latin, molaris dens, meaning "millstone tooth", from mola, millstone and dens, tooth. Molars show a great deal of diversity in size and shape across the mammal groups. The third molar of humans is sometimes vestigial.

Ferugliotherium is a genus of fossil mammals in the family Ferugliotheriidae from the Campanian and/or Maastrichtian period of Argentina. It contains a single species, Ferugliotherium windhauseni, which was first described in 1986. Although originally interpreted on the basis of a single brachydont (low-crowned) molar as a member of Multituberculata, an extinct group of small, rodent-like mammals, it was recognized as related to the hypsodont (high-crowned) Sudamericidae following the discovery of additional material in the early 1990s. After a jaw of the sudamericid Sudamerica was described in 1999, these animals were no longer considered to be multituberculates and a few fossils that were previously considered to be Ferugliotherium were assigned to unspecified multituberculates instead. Since 2005, a relationship between gondwanatheres and multituberculates has again received support. A closely related animal, Trapalcotherium, was described in 2009 on the basis of a single tooth.

<i>Morganucodon</i> Early mammaliaform genus of the Triassic and Jurassic periods

Morganucodon is an early mammaliaform genus that lived from the Late Triassic to the Middle Jurassic. It first appeared about 205 million years ago. Unlike many other early mammaliaforms, Morganucodon is well represented by abundant and well preserved material. Most of this comes from Glamorgan in Wales, but fossils have also been found in Yunnan Province in China and various parts of Europe and North America. Some closely related animals (Megazostrodon) are known from exquisite fossils from South Africa.

Ferugliotheriidae is one of three known families in the order Gondwanatheria, an enigmatic group of extinct mammals. Gondwanatheres have been classified as a group of uncertain affinities or as members of Multituberculata, a major extinct mammalian order. The best-known representative of Ferugliotheriidae is the genus Ferugliotherium from the Late Cretaceous epoch in Argentina. A second genus, Trapalcotherium, is known from a single tooth, a first lower molariform, from a different Late Cretaceous Argentinean locality. Another genus known from a single tooth, Argentodites, was first described as an unrelated multituberculate, but later identified as possibly related to Ferugliotherium. Finally, a single tooth from the Paleogene of Peru, LACM 149371, perhaps a last upper molariform, and a recent specimen from Mexico, may represent related animals.

<span class="mw-page-title-main">Tribosphenida</span> Infralegion of mammals

Tribosphenida is a group (infralegion) of mammals that includes the ancestor of Hypomylos, Aegialodontia and Theria. It belongs to the group Zatheria. The current definition of Tribosphenida is more or less synonymous with Boreosphenida.

<i>Megazostrodon</i> Extinct genus of mammaliaforms

Megazostrodon is an extinct genus of basal mammaliaforms belonging to the order Morganucodonta. It is approximately 200 million years old. Two species are known: M. rudnerae from the Early Jurassic of Lesotho and South Africa, and M. chenali from the Late Triassic of France.

Eozostrodon is an extinct morganucodont mammaliaform. It lived during the Rhaetian stage of the Late Triassic. Eozostrodon is known from disarticulated teeth from South West England and estimated to have been less than 10 cm (3.9 in) in head-body length, slightly smaller than the similar-proportioned Megazostrodon.

<span class="mw-page-title-main">Symmetrodonta</span> Extinct order of mammals

Symmetrodonta is a group of Mesozoic mammals and mammal-like synapsids characterized by the triangular aspect of the molars when viewed from above, and the absence of a well-developed talonid. The traditional group of 'symmetrodonts' ranges in age from the latest Triassic to the Late Cretaceous, but most research in the last 20-30 years has concluded that they are not a true taxonomic group, but include several unrelated branches of the mammal tree. Despite this, the name is still used informally by some researchers for convenience, usually restricted to the spalacotheriids and zhangheotheriids.

<span class="mw-page-title-main">Docodonta</span> Extinct order of mammaliaforms

Docodonta is an order of extinct Mesozoic mammaliaforms. They were among the most common mammaliaforms of their time, persisting from the Middle Jurassic to the Early Cretaceous across the continent of Laurasia. They are distinguished from other early mammaliaforms by their relatively complex molar teeth. Docodont teeth have been described as "pseudotribosphenic": a cusp on the inner half of the upper molar grinds into a basin on the front half of the lower molar, like a mortar-and-pestle. This is a case of convergent evolution with the tribosphenic teeth of therian mammals. There is much uncertainty for how docodont teeth developed from their simpler ancestors. Their closest relatives may have been certain Triassic "symmetrodonts", namely Woutersia, Delsatia, and Tikitherium.

<span class="mw-page-title-main">Mammaliaformes</span> Clade of mammals and extinct relatives

Mammaliaformes is a clade that contains the crown group mammals and their closest extinct relatives; the group radiated from earlier probainognathian cynodonts. It is defined as the clade originating from the most recent common ancestor of Morganucodonta and the crown group mammals; the latter is the clade originating with the most recent common ancestor of extant Monotremata, Marsupialia, and Placentalia. Besides Morganucodonta and the crown group mammals, Mammaliaformes includes Docodonta and Hadrocodium as well as the Triassic Tikitherium, the earliest known member of the group.

Sinoconodon is an extinct genus of mammaliamorphs that appears in the fossil record of the Lufeng Formation of China in the Sinemurian stage of the Early Jurassic period, about 193 million years ago. While sharing many plesiomorphic traits with other non-mammaliaform cynodonts, it possessed a special, secondarily evolved jaw joint between the dentary and the squamosal bones, which in more derived taxa would replace the primitive tetrapod one between the articular and quadrate bones. The presence of a dentary-squamosal joint is a trait historically used to define mammals.

<span class="mw-page-title-main">Australosphenida</span> Subclass of mammals

The Australosphenida are a clade of mammals, containing mammals with tribosphenic molars, known from the Jurassic to Mid-Cretaceous of Gondwana. Although they have often been suggested to have acquired tribosphenic molars independently from those of Tribosphenida, this has been disputed. Fossils of australosphenidans have been found from the Jurassic of Madagascar and Argentina, and Cretaceous of Australia and Argentina. Monotremes have also been considered a part of this group in many studies, but this is also disputed.

<span class="mw-page-title-main">Eutriconodonta</span> Extinct order of mammals

Eutriconodonta is an order of early mammals. Eutriconodonts existed in Asia, Africa, Europe, North and South America during the Jurassic and the Cretaceous periods. The order was named by Kermack et al. in 1973 as a replacement name for the paraphyletic Triconodonta.

<span class="mw-page-title-main">Morganucodonta</span> Extinct order of mammaliaforms

Morganucodonta is an extinct order of basal Mammaliaformes, a group including crown-group mammals (Mammalia) and their close relatives. Their remains have been found in Southern Africa, Western Europe, North America, India and China. The morganucodontans were probably insectivorous and nocturnal, though like eutriconodonts some species attained large sizes and were carnivorous. Nocturnality is believed to have evolved in the earliest mammals in the Triassic as a specialisation that allowed them to exploit a safer, night-time niche, while most larger predators were likely to have been active during the day.

Shuotherium is a fossil mammaliaform known from Middle-Late Jurassic of the Forest Marble Formation of England, and the Shaximiao Formation of Sichuan, China.

<span class="mw-page-title-main">Yinotheria</span> Subclass of mammals

Yinotheria is a proposed basal subclass clade of crown mammals uniting the Shuotheriidae, an extinct group of mammals from the Jurassic of Eurasia, with Australosphenida, a group of mammals known from the Jurassic to Cretaceous of Gondwana, which possibly include living monotremes. Today, there are only five surviving species of monotremes which live in Australia and New Guinea, consisting of the platypus and four species of echidna. Fossils of yinotheres have been found in Britain, China, Russia, Madagascar and Argentina. Contrary to other known crown mammals, they retained postdentary bones as shown by the presence of a postdentary trough. The extant members (monotremes) developed the mammalian middle ear independently.

Kenneth Alexander Kermack was a British palaeontologist at University College London most notable for his work on early mammals with his wife, Doris Mary Kermack.

<i>Triconodon</i> Extinct family of mammals

Triconodon is a genus of extinct mammal from the Early Cretaceous of England and France with two known species: T. mordax and T. averianovi. First described in 1859 by Richard Owen, it is the type genus for the order Triconodonta, a group of mammals characterised by their three-cusped (triconodont) molar teeth. Since then, this "simplistic" type of dentition has been understood to be either ancestral for mammals or else to have evolved multiple times, rendering "triconodonts" a paraphyletic or polyphyletic assemblage respectively, but several lineages of "triconodont" mammals do form a natural, monophyletic group, known as Eutriconodonta, of which Triconodon is indeed part of.

Vilevolodon is an extinct, monotypic genus of volant, arboreal euharamiyids from the Oxfordian age of the Late Jurassic of China. The type species is Vilevolodon diplomylos. The genus name Vilevolodon references its gliding capabilities, Vilevol, while don is a common suffix for mammalian taxon titles. The species name diplomylos refers to the dual mortar-and-pestle occlusion of upper and lower molars observed in the holotype; diplo, mylos.

References

  1. 1 2 Debuysschere, Maxime (2017). "The Kuehneotheriidae (Mammaliaformes) from Saint-Nicolas-de-Port (Upper Triassic, France): a Systematic Review". Journal of Mammalian Evolution. 24 (2): 127–146. doi:10.1007/s10914-016-9335-z. S2CID   20444744.
  2. Kermack, Doris M.; Kermack, K.A.; Mussett, Frances (1968). "The Welsh pantothere Kuehneotherium praecursoris". Journal of the Linnean Society of London, Zoology. 47 (312): 407–423. doi:10.1111/j.1096-3642.1968.tb00519.x.
  3. Gill, Pam, M.D. Morganucodon – lower jaw of an early mammal, Animal Bytes 13 June 2013. Web. retrieved http://animalbytescambridge.wordpress.com/2013/06/05/morganucodon-lower-jaw-of-an-early-mammal/#comments
  4. Gill, Pamela G.; Purnell, Mark A.; Crumpton, Nick; Brown, Kate Robson; Gostling, Neil J.; Stampanoni, M.; Rayfield, Emily J. (2014). "Dietary specializations and diversity in feeding ecology of the earliest stem mammals". Nature. 512 (7514): 303–305. Bibcode:2014Natur.512..303G. doi:10.1038/nature13622. hdl: 2381/29192 . PMID   25143112. S2CID   4469841.
  5. Benton, Michael J. (2005) "Vertebrate Palaeontology" pg. 138-139, 189-190, and 300-306
  6. 1 2 Luo, Zhe-Xi; Kielan-Jaworowska, Zofia; Cifelli, Richard L. (2002). "In quest for a phylogeny of Mesozoic mammals". Acta Palaeontologica Polonica. 47 (1): 1–78. S2CID   80715429 .
  7. Godefroit, Pascal; Sigogneau-Russell, Denise (1 January 1999). "Kuehneotheriids from Saint-Nicolas-de-Port (late Triassic of France)". Geologica Belgica. ProQuest   51112892.
  8. Kielan-Jaworowska, Zofia; Cifelli, Richard L.; Luo, Zhe-Xi (2005). Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press. pp. 361–362. ISBN   978-0-231-11918-4.
  9. Newham, Elis; Gill, Pamela G.; Brewer, Philippa; Benton, Michael J.; Fernandez, Vincent; Gostling, Neil J.; Haberthür, David; Jernvall, Jukka; Kankaanpää, Tuomas; Kallonen, Aki; Navarro, Charles; Pacureanu, Alexandra; Richards, Kelly; Brown, Kate Robson; Schneider, Philipp; Suhonen, Heikki; Tafforeau, Paul; Williams, Katherine A.; Zeller-Plumhoff, Berit; Corfe, Ian J. (12 October 2020). "Reptile-like physiology in Early Jurassic stem-mammals". Nature Communications. 11 (1): 5121. doi: 10.1038/s41467-020-18898-4 . PMC   7550344 . PMID   33046697.

Further reading