Lenz's law

Last updated

Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after physicist Heinrich Lenz, who formulated it in 1834. [1]

Contents

It is a qualitative law that specifies the direction of induced current, but states nothing about its magnitude. Lenz's law predicts the direction of many effects in electromagnetism, such as the direction of voltage induced in an inductor or wire loop by a changing current, or the drag force of eddy currents exerted on moving objects in a magnetic field.

Lenz's law may be seen as analogous to Newton's third law in classical mechanics [2] [3] and Le Chatelier's principle in chemistry. [4]

Definition

Lenz's law states that:

The current induced in a circuit due to a change in a magnetic field is directed to oppose the change in flux and to exert a mechanical force which opposes the motion.

Lenz's law is contained in the rigorous treatment of Faraday's law of induction (the magnitude of EMF induced in a coil is proportional to the rate of change of the magnetic flux), [5] where it finds expression by the negative sign:

which indicates that the induced electromotive force and the rate of change in magnetic flux have opposite signs. [6]

This means that the direction of the back EMF of an induced field opposes the changing current that is its cause. D.J. Griffiths summarized it as follows: Nature abhors a change in flux. [7]

If a change in the magnetic field of current i1 induces another electric current, i2, the direction of i2 is opposite that of the change in i1. If these currents are in two coaxial circular conductors 1 and 2 respectively, and both are initially 0, then the currents i1 and i2 must counter-rotate. The opposing currents will repel each other as a result.

A cheatsheet for remembering Lenz law Lenz law demonstration.png
A cheatsheet for remembering Lenz law

Example

Magnetic fields from strong magnets can create counter-rotating currents in a copper or aluminium pipe. This is shown by dropping the magnet through the pipe. The descent of the magnet inside the pipe is observably slower than when dropped outside the pipe.

When a voltage is generated by a change in magnetic flux according to Faraday's law, the polarity of the induced voltage is such that it produces a current whose magnetic field opposes the change which produces it. The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. [8] In the examples above, if the flux is increasing, the induced field acts in opposition to it. If it is decreasing, the induced field acts in the direction of the applied field to oppose the change.

Detailed interaction of charges in these currents

Aluminium ring moved by electromagnetic induction, thus demonstrating Lenz's law.
Experiment showing Lenz's law with two aluminium rings on a scales-like device set up on a pivot so as to freely move in the horizontal plane. One ring is fully enclosed, while the other has an opening, not forming a complete circle. When we place a bar magnet near the fully enclosed ring, the ring is repulsed by it. However, when the system comes to a rest, and we remove the bar magnet, then the ring is attracted by it. In the first case, the induced current created in the ring resists the increase of magnetic flux caused by the proximity of the magnet, while in the latter, taking the magnet out of the ring decreases the magnetic flux, inducing such current whose magnetic field resists the decrease of flux. This phenomenon is absent when we repeat the experiment with the ring that isn't enclosed by inserting and removing the magnet bar. The induced currents in this ring can't enclose themselves in the ring, and have a very weak field that cannot resist the change of the magnetic flux.

In electromagnetism, when charges move along electric field lines work is done on them, whether it involves storing potential energy (negative work) or increasing kinetic energy (positive work).

When net positive work is applied to a charge q1, it gains speed and momentum. The net work on q1 thereby generates a magnetic field whose strength (in units of magnetic flux density (1 tesla = 1 volt-second per square meter)) is proportional to the speed increase of q1. This magnetic field can interact with a neighboring charge q2, passing on this momentum to it, and in return, q1 loses momentum.

The charge q2 can also act on q1 in a similar manner, by which it returns some of the momentum that it received from q1. This back-and-forth component of momentum contributes to magnetic inductance. The closer that q1 and q2 are, the greater the effect. When q2 is inside a conductive medium such as a thick slab made of copper or aluminum, it more readily responds to the force applied to it by q1. The energy of q1 is not instantly consumed as heat generated by the current of q2 but is also stored in two opposing magnetic fields. The energy density of magnetic fields tends to vary with the square of the magnetic field's intensity; however, in the case of magnetically non-linear materials such as ferromagnets and superconductors, this relationship breaks down.

Conservation of momentum

Momentum must be conserved in the process, so if q1 is pushed in one direction, then q2 ought to be pushed in the other direction by the same force at the same time. However, the situation becomes more complicated when the finite speed of electromagnetic wave propagation is introduced (see retarded potential). This means that for a brief period the total momentum of the two charges is not conserved, implying that the difference should be accounted for by momentum in the fields, as asserted by Richard P. Feynman. [9] Famous 19th century electrodynamicist James Clerk Maxwell called this the "electromagnetic momentum". [10] Yet, such a treatment of fields may be necessary when Lenz's law is applied to opposite charges. It is normally assumed that the charges in question have the same sign. If they do not, such as a proton and an electron, the interaction is different. An electron generating a magnetic field would generate an EMF that causes a proton to accelerate in the same direction as the electron. At first, this might seem to violate the law of conservation of momentum, but such an interaction is seen to conserve momentum if the momentum of electromagnetic fields is taken into account.

Related Research Articles

<span class="mw-page-title-main">Electromagnetic coil</span> Electrical component

An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, and sensor coils. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF (voltage) in the conductor.

<span class="mw-page-title-main">Inductor</span> Passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

<span class="mw-page-title-main">Inductive coupling</span>

In electrical engineering, two conductors are said to be inductively coupled or magnetically coupled when they are configured in a way such that change in current through one wire induces a voltage across the ends of the other wire through electromagnetic induction. A changing current through the first wire creates a changing magnetic field around it by Ampere's circuital law. The changing magnetic field induces an electromotive force (EMF) voltage in the second wire by Faraday's law of induction. The amount of inductive coupling between two conductors is measured by their mutual inductance.

Timeline of electromagnetism and classical optics lists, within the history of electromagnetism, the associated theories, technology, and events.

<span class="mw-page-title-main">Electromagnetic induction</span> Production of voltage by a varying magnetic field

Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field.

<span class="mw-page-title-main">Magnetic flux</span> Surface integral of the magnetic field

In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber, and the CGS unit is the maxwell. Magnetic flux is usually measured with a fluxmeter, which contains measuring coils, and it calculates the magnetic flux from the change of voltage on the coils.

<span class="mw-page-title-main">Electromotive force</span> Electrical action produced by a non-electrical source

In electromagnetism and electronics, electromotive force is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy. Other electrical equipment also produce an emf, such as batteries, which convert chemical energy, and generators, which convert mechanical energy. This energy conversion is achieved by physical forces applying physical work on electric charges. However, electromotive force itself is not a physical force, and ISO/IEC standards have deprecated the term in favor of source voltage or source tension instead.

<span class="mw-page-title-main">Electric generator</span> Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

<span class="mw-page-title-main">Eddy current</span> Loops of electric current induced within conductors by a changing magnetic field

In electromagnetism, an eddy current is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.

<span class="mw-page-title-main">Electrodynamic suspension</span> Magnetic levitation by time-varying fields

Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields. This induces eddy currents in the conductors that creates a repulsive magnetic field which holds the two objects apart.

Kirchhoff's circuit laws are two equalities that deal with the current and potential difference in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of James Clerk Maxwell. Widely used in electrical engineering, they are also called Kirchhoff's rules or simply Kirchhoff's laws. These laws can be applied in time and frequency domains and form the basis for network analysis.

<span class="mw-page-title-main">Faraday's law of induction</span> Basic law of electromagnetism

Faraday's law of induction is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction, is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.

<span class="mw-page-title-main">Eddy current brake</span> Device used to slow or stop a moving object by generating eddy currents

An eddy current brake, also known as an induction brake, Faraday brake, electric brake or electric retarder, is a device used to slow or stop a moving object by generating eddy currents and thus dissipating its kinetic energy as heat. Unlike friction brakes, where the drag force that stops the moving object is provided by friction between two surfaces pressed together, the drag force in an eddy current brake is an electromagnetic force between a magnet and a nearby conductive object in relative motion, due to eddy currents induced in the conductor through electromagnetic induction.

Counter-electromotive force, is the electromotive force (EMF) manifesting as a voltage that opposes the change in current which induced it. CEMF is the EMF caused by electromagnetic induction.

<span class="mw-page-title-main">Faraday paradox</span> Apparent paradox with Faradays law of induction

The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes:

<span class="mw-page-title-main">Dynamo</span> Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

Inductive discharge ignition systems were developed in the 19th century as a means to ignite the air–fuel mixture in the combustion chamber of internal combustion engines. The first versions were low tension coils, then low-tension and in turn high-tension magnetos, which were offered as a more effective alternative to the older-design hot-tube ignitors that had been utilized earlier on hot tube engines. With the advent of small stationary engines; and with the development of the automobile, engine-driven tractors, and engine-driven trucks; first the magneto and later the distributor-type systems were utilized as part of an efficient and reliable engine ignition system on commercially available motorized equipment. These systems were in widespread use on all cars and trucks through the 1960s. Manufacturers such as Ford, General Motors, Chrysler, Citroen, Mercedes, John Deere, International Harvester, and many others incorporated them into their products. The inductive discharge system is still extensively used today.

Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism. Michael Faraday discovered the converse, that magnetism could induce electric currents, and James Clerk Maxwell put the whole thing together in a unified theory of electromagnetism. Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism. Radio waves differ from light only in that the wavelength of the former is much longer than the latter. Albert Einstein showed that the magnetic field arises through the relativistic motion of the electric field and thus magnetism is merely a side effect of electricity. The modern theoretical treatment of electromagnetism is as a quantum field in quantum electrodynamics.

References

  1. Lenz, E. (1834), "Ueber die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme", Annalen der Physik und Chemie, 107 (31), pp. 483–494. A partial translation of the paper is available in Magie, W. M. (1963), A Source Book in Physics, Harvard: Cambridge MA, pp. 511–513.
  2. Schmitt, Ron. Electromagnetics explained. 2002. Retrieved 16 July 2010.
  3. Waygood, Adrian (2013). An Introduction to Electrical Science. Taylor & Francis. ISBN   9781135071134.
  4. Thomsen, Volker B.E. (2000). "LeChâtelier's Principle in the Sciences". J. Chem. Educ. 77 (2): 173. Bibcode:2000JChEd..77..173T. doi:10.1021/ed077p173.
  5. "Faraday's law of electromagnetic induction". 26 February 2021. Retrieved 2021-02-27.
  6. Giancoli, Douglas C. (1998). Physics: principles with applications (5th ed.). pp.  624.
  7. Griffiths, David (2013). Introduction to Electrodynamics. Pearson. p. 315. ISBN   978-0-321-85656-2.
  8. "Faraday's law and Lenz's law". buphy.bu.edu. Retrieved 2021-01-15.
  9. The Feynman Lectures on Physics : Volume I, Chapter 10, page 9.
  10. Maxwell, James C. A treatise on electricity and magnetism, Volume 2. Retrieved 16 July 2010.