Membrane dipeptidase

Last updated
Membrane dipeptidase
Identifiers
EC no. 3.4.13.19
CAS no. 9031-99-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Membrane dipeptidase (EC 3.4.13.19, renal dipeptidase, dehydropeptidase I (DPH I), dipeptidase, aminodipeptidase, dipeptide hydrolase, dipeptidyl hydrolase, nonspecific dipeptidase, glycosyl-phosphatidylinositol-anchored renal dipeptidase, MBD, MDP, leukotriene D4 hydrolase) is an enzyme. [1] [2] [3] [4] This enzyme catalyses the following chemical reaction

Contents

Hydrolysis of dipeptides (e.g., leukotriene D4, cystinyl-bis-glycine, some β-lactam antibiotics (e.g., carbapenem))

This membrane-bound, zinc enzyme has broad specificity.

Inhibitors include bestatin and cilastatin.

Genes

Related Research Articles

<span class="mw-page-title-main">Angiotensin-converting enzyme</span> Mammalian protein found in humans

Angiotensin-converting enzyme, or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II. Therefore, ACE indirectly increases blood pressure by causing blood vessels to constrict. ACE inhibitors are widely used as pharmaceutical drugs for treatment of cardiovascular diseases.

<span class="mw-page-title-main">Carbapenem</span> Class of highly effective antibiotic agents

Carbapenems are a class of very effective antibiotic agents most commonly used for the treatment of severe bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta-lactam antibiotics drug class, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.

<span class="mw-page-title-main">Cilastatin</span> Chemical compound

Cilastatin inhibits the human enzyme dehydropeptidase.

<span class="mw-page-title-main">Glycoside hydrolase</span> Enzyme

Glycoside hydrolases catalyze the hydrolysis of glycosidic bonds in complex sugars. They are extremely common enzymes with roles in nature including degradation of biomass such as cellulose (cellulase), hemicellulose, and starch (amylase), in anti-bacterial defense strategies, in pathogenesis mechanisms and in normal cellular function. Together with glycosyltransferases, glycosidases form the major catalytic machinery for the synthesis and breakage of glycosidic bonds.

Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.

<span class="mw-page-title-main">Thienamycin</span> Chemical compound

Thienamycin is one of the most potent naturally produced antibiotics known thus far, discovered in Streptomyces cattleya in 1976. Thienamycin has excellent activity against both Gram-positive and Gram-negative bacteria and is resistant to bacterial β-lactamase enzymes. Thienamycin is a zwitterion at pH 7.

In enzymology, a N-acetylglucosaminylphosphatidylinositol deacetylase (EC 3.5.1.89) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dipeptidase 1</span> Protein-coding gene in the species Homo sapiens

Dipeptidase 1 (DPEP1), or renal dipeptidase, is a membrane-bound glycoprotein responsible for hydrolyzing dipeptides. It is found in the microsomal fraction of the porcine kidney cortex. It exists as a disulfide-linked homodimer that is glygosylphosphatidylinositol (GPI)-anchored to the renal brush border of the kidney. The active site on each homodimer is made up of a barrel subunit with binuclear zinc ions that are bridged by the Gly125 side-chain located at the bottom of the barrel.

<span class="mw-page-title-main">Placental alkaline phosphatase</span> Protein-coding gene in the species Homo sapiens

Alkaline phosphatase, placental type also known as placental alkaline phosphatase (PLAP) is an allosteric enzyme that in humans is encoded by the ALPP gene.

<span class="mw-page-title-main">Dipeptidase 2</span> Mammalian protein found in Homo sapiens

Dipeptidase 2 (DPEP2) is a protein which in humans is encoded by the DPEP2 gene.

<span class="mw-page-title-main">Dipeptidase 3</span> Protein-coding gene in the species Homo sapiens

Dipeptidase 3 (DPEP3) is a protein that in humans is encoded by the DPEP3 gene.

<span class="mw-page-title-main">Ubenimex</span> Chemical compound

Ubenimex (INN), also known more commonly as bestatin, is a competitive, reversible protease inhibitor. It is an inhibitor of arginyl aminopeptidase (aminopeptidase B), leukotriene A4 hydrolase (a zinc metalloprotease that displays both epoxide hydrolase and aminopeptidase activities), alanyl aminopeptidase (aminopeptidase M/N), leucyl/cystinyl aminopeptidase (oxytocinase/vasopressinase), and membrane dipeptidase (leukotriene D4 hydrolase). It is being studied for use in the treatment of acute myelocytic leukemia and lymphedema. It is derived from Streptomyces olivoreticuli. Ubenimex has been found to inhibit the enzymatic degradation of oxytocin, vasopressin, enkephalins, and various other peptides and compounds.

In molecular biology, glycoside hydrolase family 72 is a family of glycoside hydrolases.

<span class="mw-page-title-main">Glycoside hydrolase family 29</span>

In molecular biology, glycoside hydrolase family 29 is a family of glycoside hydrolases.

Glypiation is the addition by covalent bonding of a glycosylphosphatidylinositol (GPI) anchor and is a common post-translational modification that localizes proteins to cell membranes. This special kind of glycosylation is widely detected on surface glycoproteins in eukaryotes and some Archaea.

Xaa-Pro aminopeptidase is an enzyme. This enzyme catalyses the following chemical reaction

Xaa-Arg dipeptidase is an enzyme. This enzyme catalyses the following chemical reaction

Peptidyl-dipeptidase B is an enzyme. It catalyses the following chemical reaction

Leukotriene-C4 hydrolase (EC 3.4.19.14, gamma-glutamyl leukotrienase) is an enzyme. Gamma-glutamyltransferase 5 (GGT5) is a human gene which encodes an enzyme protein that belongs to this class of enzymes. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">OBPgp279</span>

OBPgp279 is an endolysin that hydrolyzes peptidoglycan, a major constituent in bacterial membrane. OBPgp279 is found in Pseudomonas fluorescens phage OBP, which belongs in the Myoviridae family of bacteriophages. Because of its role in hydrolyzing the peptidoglycan layer, OBPgp279 is a key enzyme in the lytic cycle of the OBP bacteriophage; it allows the bacteriophage to lyse its host internally to escape. Unlike other endolysins, OBPgp279 does not rely on holins to perforate the inner bacterial membrane in order to reach the peptidoglycan layer. Although OBPgp279 is not a well-studied enzyme, it has garnered interest as a potential antibacterial protein due to its activity against multidrug-resistant gram-negative bacteria.

References

  1. Campbell BJ, Lin YC, Davis RV, Ballew E (May 1966). "The purification and properties of a particulate renal dipeptidase". Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation. 118 (2): 371–86. doi:10.1016/s0926-6593(66)80046-2. PMID   5961612.
  2. Campbell, B.J. (1970). "Renal dipeptidase". Methods Enzymol. 19: 722–729. doi:10.1016/0076-6879(70)19059-8.
  3. Kropp H, Sundelof JG, Hajdu R, Kahan FM (July 1982). "Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase". Antimicrobial Agents and Chemotherapy. 22 (1): 62–70. doi:10.1128/aac.22.1.62. PMC   183675 . PMID   7125632.
  4. Hooper NM, Keen JN, Turner AJ (January 1990). "Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme". The Biochemical Journal. 265 (2): 429–33. doi:10.1042/bj2650429. PMC   1136904 . PMID   2137335.