Oral skills

Last updated

Oral skills are speech enhancers that are used to produce clear sentences that are intelligible to an audience. Oral skills are used to enhance the clarity of speech for effective communication. Communication is the transmission of messages and the correct interpretation of information between people. The production speech is insisted by the respiration of air from the lungs that initiates the vibrations in the vocal cords. [1] The cartilages in the larynx adjust the shape, position and tension of the vocal cords.  Speech enhancers are used to improve the clarity and pronunciation of speech for correct interpretation of speech. The articulation of voice enhances the resonance of speech and enables people to speak intelligibly. [1] Speaking at a moderate pace and using clear pronunciation improves the phonation of sounds. The term "phonation" means the process to produce intelligible sounds for the correct interpretation of speech. [2] Speaking in a moderate tone enables the audience to process the information word for word.

Contents

Speech production

Speech is produced from the vibrations in the vocal cords. The lungs, vocal cords and larynx play an important role in speech production. The lungs draws in air to produce vibrations in the vocal cords. The movement and shape of the vocal fords determines the pitch of sounds. The larynx consists of nine cartilages that assists the vocal cords to produce sound. Producing clear speech is important for effective communication.

2303 Anatomy of Nose-Pharynx-Mouth-Larynx.jpg

Lungs

The lungs pump air to the vocal folds initiating air pressure. This creates vibrations in the vocal cords to produce sound. During breathing and speaking, air is exhaled out of the lungs. The pressure of the air opens the vocal cords. The expanding of the diaphragm and the intercostal muscles builds high pressure in the thoracic cavity. This causes unbalanced air pressure between the inside and the outside of the body. Thus, the air pressure reaches equilibrium when the air is exhaled. [1]

Vocal cords

Vibrations in the vocal cords is achieved by the accelerated movements of the opening and closing of the glottis. Sound is produced from this movement as air is expired from the lungs. The size of the opening of the glottis can determine the pitch of sounds. [3] A larger opening of the glottis produces a low pitch tone and a smaller opening of the glottis produces a high pitch tone. The contraction and relaxation of the vocal cords also impacts the pitch of sound. The length and the force of the vocal cords impacts the vibrations of the vocal cords. The longer and relaxed the vocal cord are, the slower they vibrate and in turn produces a lower pitch sound. [4]

Larynx

The larynx (voice box) is located in the throat. The larynx produces an open airway when breathing and a mechanism for sound production. The larynx is contains the vocal cords and nine cartilages (gristle) that are connected by membranes and ligaments. The large cartilage ring (thyroid cartilage) is located at the upper part of the larynx. The large cartilage is composed of two bands that forms an Adams Apple. [3] The cricoid cartilage is located below the cartilage and it is attached to the trachea. Six thinner cartilages form part of the lateral and posterior walls of the larynx. The arytenoid cartilages are vital for sound production as the arytenoid cartilages anchor the vocal cords. [5] The muscles in the cartilage adjust the shape, position and tension of the vocal cords.  The interior of the larynx has a mucus-coated lining. The layer of cilia on the mucus lining enables the vocal cords to push out foreign substances such as dust mites and mucus particles out of the larynx. [1]  Clearing the throat of foreign particles helps to produces crisp and clear sound that is intelligible and effective for communication.  The vocal ligaments are buried under the mucus lining of cilia. The vocal ligaments are attached to cartilages and the mucus lining is folded to form the vocal folds. From a bird's eye view, both sides of the vocal folds produces a ‘V’ shape. The vocal folds vibrates in a ‘V’ shape and produces sounds when air passes between the lungs and the glottis. [4]  The vestibular cords are mucosal folds that sit above the vocal cords. The mucus produced by the vestibular cords assists in lubricating the vocal cords and prevents any food or liquid entering the breathing passages.

Clarity in speaking

Clarity in speaking is achieved by utilising oral skills. Oral skills strengthen a speakers ability to produce clear and crisp sounds. Using a variety of different oral skills the tonal modulation and articulation of voice. These oral skills include speaking in a moderate pace to produce intelligible speech that can be understood word for word. Having a clear pronunciation of words enhances the diction of speech. [6]

Articulation

The human mouth utilises the lips, tongue and jaws for articulation. The articulation of vowels and phrases produces clear speech that is intelligible. The resonance of speech is produced by the pharynx and some sinuses of the cranium. These sinuses contain air-filled cavities that are lined with mucus membranes. [1] Any blockage of theses cavities such as a cold, blocked nose or a sore throat can affect the quality of speech as not enough air is being released from these cavities. The volume of sound is determined by the intensity of the airflow. A greater force of airflow produces a louder sound as there are more vibrations. [5] A louder voice can improve the intelligibility of speech when speaking to a larger audience. Speakers alter their articulation and their volume when speaking in different environments in order for others to understand them.

Moderate pace

A moderate pace of speech enables a person to speak intelligibly. [2] The moderate pace in speech enables a listener to process and understand the information. [6] This helps to break down large and complex information to smaller parts. Pausing during speaking emphasises the information and this enables the audience to interpret the information correctly. Speaking at approximately 120-150 words per minute (wpm) is a moderate pace for an audience to comprehend information. [7] A varying speaking rate can engage the interest and attention of the audience. A fast tempo creates a mood of tension and swiftness. The message conveyed to the audience can be interpreted as an urgent or a light-hearted message. A slow tempo is used to convey complex and crucial information as the audience needs more time to process the ideas and information. [8]

Pronunciation

The correct pronunciation of vowels is aided by the soft plate, tongue, lips and cheeks. [9] These structures aid to ‘shape’ sound into vowels and consonants. The correct pronunciation of words enables the listener to correctly interpret the information. The movement of the mouth and lips affects the pronunciation words. The tongue plays a key role in the pronunciation of vowels and consonants. The tongue moves in several different positions to correctly produce these sounds.  The tip of the tongue moves towards the top of the gum ridge to produce words starting with the letter ‘L’. The tongue will push back away from the teeth to produce words starting with letter ‘R’. Words are pronounced by syllables. This breaks down words into smaller parts which enables the audience to comprehend the word. [3] Syllables can also be emphasised to clearly pronounce words correctly. To pronounce a noun that is two-syllables long, the first syllable is emphasised. To pronounce a verb that is two-syllables long, the second syllable is emphasised. Stressing on important words in sentences can emphasise the meaning and clarity of sentences. [4]

Tone

The tone of voice in speaking is modulated to convey expression and emotion. This enables the responder to recognise emotion that is appropriate of the circumstance and this enables the audience to process information immediately and correctly. The pitch of one's voice can impact the clarity of speech. A monotonous tone of voice can cause the listener to misinterpret information as it is harder to focus to a monotonous tone. [8] A verbose tone of voice highlights technical language that is inwardly focused. A verbose tone of voice is used to convey factual information. An informal tone is used to express non-technical information. Inflections in speech is the variation of rise and fall of the volume of tone. Inflection in speech is vital for intonation for intelligible speaking. [10] Intonation of the voice engages the attention and concentration of the listener. Inflections in speech can impact the relative importance of information. Breathing plays an important role in the production of inflections in speech. Diaphragmatic breathing controls the amount of air the body inhales and exhales and influences the rise and fall of the volume of tone.

Verbal fillers

Verbal fillers are commonly used when a speaker recalls or is confused by what they are saying. "Um", "Err" and "Hmm", are commonly used verbal fillers. The repetition of phrases in sentences is a verbal filler. that These unintentional pauses can affect the clarity of speech as it creates gaps in the speaker's sentences. Verbal fillers can disrupt the flow of speech and can distract the attention of the audience. This can impact the audience understanding and ability to process information. [10] A pause in a sentence is effective to use than verbal fillers as it does not distract the audience with an unprecedented gap in the information. Pauses enables the audience to reflect on key ideas that has been spoken about. Mumbling and not opening the mouth wide enough when speaking can produce unclear speech that is not intelligible.

Speech Perception

Anatomy of the Human Ear.svg

The human ears detect vibrations from sounds and converts this information to the brain via nerve impulses. These vibrations are transferred to specialised parts of the ears. The external, middle and inner ear play an important role in the transformation of sound and energy. The techniques used in oral skills to produce clear speech impacts the correct interpretation of information.

External ear

The external ear (outer ear) consists of the pinnae and meatus and the outer layer of the eardrum (tympanic membrane). The pinnae helps to restrict sound waves entering the ears. Sound from the external environment is transmitted as a wave in the auditory canal (meatus). This is then transmitted to the tympanic membrane (eardrum). [11] The sound waves sets up vibrations in the tympanic membrane. The pars tensa is an active vibrating area that responds to sound waves. The tympanic membrane regularly grows and can automatically self-repair after injury.

Middle ear

The middle ear is a cavity that is filled with air. The tympanic membrane separates the middle ear from the external ear. The middle ear is joined to the throat via the Eustachian tube. The Eustachian tube adjusts the air pressure around the sides of the tympanic membrane by drawing in air from the mouth. The sound in the tympanic membrane is converted into vibrations (kinetic energy) via the three interconnecting ear ossicles to the oval window of the inner ear. The middle ear is connected to the perilymph (fluid) of the inner ear via the oval window. [11] [12] The oval window has the ability to hold fluid in the cochlea.

Inner ear

The inner ear is composed of bony canals (bony labyrinth). It is divided into three parts: vestibule, semicircular canals and the cochlea. These vestibule and the semicircular parts play a key role in the sensors for balancing. The cochlea plays an important part in hearing. Vibrations from the oval window of the inner ear is transferred to the perilymph in the upper canal via a pressure wave. The Reissner's membrane transfers the vibrations to the endolymph of the middle canal. The Basilar membrane then vibrates and triggers the hair cells of the organ of Corti. The kinetic energy is converted to electrochemical energy as the auditory nerve transmits the information to the brain where sound is interpreted. [11] [12] [13]

See also

Related Research Articles

<span class="mw-page-title-main">Glottis</span> Opening between the vocal folds

The glottis is the opening between the vocal folds. The glottis is crucial in producing sound from the vocal folds.

<span class="mw-page-title-main">Phonetics</span> Branch of linguistics that comprises the study of the sounds of human language

Phonetics is a branch of linguistics that studies how humans produce and perceive sounds, or in the case of sign languages, the equivalent aspects of sign. Linguists who specialize in studying the physical properties of speech are phoneticians. The field of phonetics is traditionally divided into three sub-disciplines based on the research questions involved such as how humans plan and execute movements to produce speech, how various movements affect the properties of the resulting sound, or how humans convert sound waves to linguistic information. Traditionally, the minimal linguistic unit of phonetics is the phone—a speech sound in a language which differs from the phonological unit of phoneme; the phoneme is an abstract categorization of phones, and it is also defined as the smallest unit that discerns meaning between sounds in any given language.

The term phonation has slightly different meanings depending on the subfield of phonetics. Among some phoneticians, phonation is the process by which the vocal folds produce certain sounds through quasi-periodic vibration. This is the definition used among those who study laryngeal anatomy and physiology and speech production in general. Phoneticians in other subfields, such as linguistic phonetics, call this process voicing, and use the term phonation to refer to any oscillatory state of any part of the larynx that modifies the airstream, of which voicing is just one example. Voiceless and supra-glottal phonations are included under this definition.

Voice analysis is the study of speech sounds for purposes other than linguistic content, such as in speech recognition. Such studies include mostly medical analysis of the voice (phoniatrics), but also speaker identification. More controversially, some believe that the truthfulness or emotional state of speakers can be determined using voice stress analysis or layered voice analysis.

<span class="mw-page-title-main">Vocal cords</span> Folds of throat tissues that help to create sounds through vocalization

In humans, the vocal cords, also known as vocal folds, are folds of throat tissues that are key in creating sounds through vocalization. The size of vocal cords affects the pitch of voice. Open when breathing and vibrating for speech or singing, the folds are controlled via the recurrent laryngeal branch of the vagus nerve. They are composed of twin infoldings of mucous membrane stretched horizontally, from back to front, across the larynx. They vibrate, modulating the flow of air being expelled from the lungs during phonation.

<span class="mw-page-title-main">Human voice</span> Sound made by a human being using the vocal tract

The human voice consists of sound made by a human being using the vocal tract, including talking, singing, laughing, crying, screaming, shouting, humming or yelling. The human voice frequency is specifically a part of human sound production in which the vocal folds are the primary sound source.

<span class="mw-page-title-main">Larynx</span> Voice box, an organ in the neck of amphibians, reptiles, and mammals

The larynx, commonly called the voice box, is an organ in the top of the neck involved in breathing, producing sound and protecting the trachea against food aspiration. The opening of larynx into pharynx known as the laryngeal inlet is about 4–5 centimeters in diameter. The larynx houses the vocal cords, and manipulates pitch and volume, which is essential for phonation. It is situated just below where the tract of the pharynx splits into the trachea and the esophagus. The word 'larynx' comes from the Ancient Greek word lárunx ʻlarynx, gullet, throat.ʼ

This is a glossary of medical terms related to communication disorders which are psychological or medical conditions that could have the potential to affect the ways in which individuals can hear, listen, understand, speak and respond to others.

The field of articulatory phonetics is a subfield of phonetics that studies articulation and ways that humans produce speech. Articulatory phoneticians explain how humans produce speech sounds via the interaction of different physiological structures. Generally, articulatory phonetics is concerned with the transformation of aerodynamic energy into acoustic energy. Aerodynamic energy refers to the airflow through the vocal tract. Its potential form is air pressure; its kinetic form is the actual dynamic airflow. Acoustic energy is variation in the air pressure that can be represented as sound waves, which are then perceived by the human auditory system as sound.

<span class="mw-page-title-main">Microbat</span> Suborder of mammals

Microbats constitute the suborder Microchiroptera within the order Chiroptera (bats). Bats have long been differentiated into Megachiroptera (megabats) and Microchiroptera, based on their size, the use of echolocation by the Microchiroptera and other features; molecular evidence suggests a somewhat different subdivision, as the microbats have been shown to be a paraphyletic group.

Falsetto is the vocal register occupying the frequency range just above the modal voice register and overlapping with it by approximately one octave.

In phonetics, the airstream mechanism is the method by which airflow is created in the vocal tract. Along with phonation and articulation, it is one of three main components of speech production. The airstream mechanism is mandatory for most sound production and constitutes the first part of this process, which is called initiation.

<span class="mw-page-title-main">Hearing test</span> Evaluation of the sensitivity of a persons sense of hearing

A hearing test provides an evaluation of the sensitivity of a person's sense of hearing and is most often performed by an audiologist using an audiometer. An audiometer is used to determine a person's hearing sensitivity at different frequencies. There are other hearing tests as well, e.g., Weber test and Rinne test.

Esophageal speech, also known as esophageal voice, is an airstream mechanism for speech that involves oscillation of the esophagus. This contrasts with traditional laryngeal speech, which involves oscillation of the vocal folds. In esophageal speech, pressurized air is injected into the upper esophagus and then released in a controlled manner to create the airstream necessary for speech. Esophageal speech is a learned skill that requires speech training and much practice. On average it takes 6 months to a year to learn this form of speech. Because of the high level of difficulty in learning esophageal speech, some patients are unable to master the skill.

Coup de glotte or 'shock of the glottis' is a term used in the theory of singing technique to describe a particular method of emitting or opening a note by an abrupt physical mechanism of the glottis. During the 19th century there was disagreement among teachers and performers as to whether the technique should be taught as a normal part of vocal method or not. The technique is still sometimes used to achieve particular effects, dramatic or ornamental, but is usually avoided in the teaching of fundamental vocal method. In English, it is often called a glottal attack.

<span class="mw-page-title-main">Vocal pedagogy</span> Study of the art and science of voice instruction

Vocal pedagogy is the study of the art and science of voice instruction. It is used in the teaching of singing and assists in defining what singing is, how singing works, and how proper singing technique is accomplished.

Vocal resonance may be defined as "the process by which the basic product of phonation is enhanced in timbre and/or intensity by the air-filled cavities through which it passes on its way to the outside air." Throughout the vocal literature, various terms related to resonation are used, including: amplification, filtering, enrichment, enlargement, improvement, intensification, and prolongation. Acoustic authorities would question many of these terms from a strictly scientific perspective. However, the main point to be drawn from these terms by a singer or speaker is that the result of resonation is to make a better sound, or at least suitable to a certain esthetical and practical domain.

Histology is the study of the minute structure, composition, and function of tissues. Mature human vocal cords are composed of layered structures which are quite different at the histological level.

Alaryngeal speech is speech using an airstream mechanism that uses features other than the glottis to create voicing. There are three types: esophageal, buccal, and pharyngeal speech. Each of these uses an alternative method of creating phonation to substitute for the vocal cords in the larynx. These forms of alaryngeal speech are also called "pseudo-voices".

Thyroplasty is a phonosurgical technique designed to improve the voice by altering the thyroid cartilage of the larynx, which houses the vocal cords in order to change the position or the length of the vocal cords.

References

  1. 1 2 3 4 5 Schum, Donald J (June 1996). "Intelligibility of clear and conversational speech of young and elderly talkers" (PDF). Journal of the American Academy of Audiology. 7 (3): 212–8. PMID   8780994.
  2. 1 2 Scarborough, Rebecca; Zellou, Georgia (November 2013). "Clarity in communication: 'Clear' speech authenticity and lexical neighborhood density effects in speech production and perception". The Journal of the Acoustical Society of America. 134 (5): 3793–3807. Bibcode:2013ASAJ..134.3793S. doi:10.1121/1.4824120. PMID   24180789.
  3. 1 2 3 Redford, M.A. (2015). The handbook of speech production.
  4. 1 2 3 Rueschemeyer, S.A (2018). "Speech Production". In Rueschemeyer, Shirley-Ann; Gaskell, M. Gareth (eds.). The Oxford Handbook of Psycholinguistics. Oxford University Press. pp. 290–305. doi:10.1093/oxfordhb/9780198786825.013.13. ISBN   9780198786825.
  5. 1 2 Sereno, Joan A.; Jongman, Allard; Wang, Yue; Hamarneh, Ghassan; Tang, Lisa; Garg, Saurabh; Tupper, Paul; McMurray, Bob; Redmon, Charles; Zeng, Yuyu; Hannah, Beverly; Leung, Keith K. W.; Cho, Sylvia (September 2018). "Linking production and perception of clear speech". The Journal of the Acoustical Society of America. 144 (3): 1725. Bibcode:2018ASAJ..144.1725S. doi:10.1121/1.5067651.
  6. 1 2 Smiljanic, Rajka; Viau, Josh; Bradlow, Ann (November 2006). "The effect of phonological neighborhood density and word frequency on vowel production and perception in clear speech". The Journal of the Acoustical Society of America. 120 (5): 3291. Bibcode:2006ASAJ..120.3291S. doi:10.1121/1.4777790.
  7. Lucas, E.S (2008). The art of public speaking. New York: McGraw-Hill.
  8. 1 2 Williamson, G (1999). Human communication: A linguistic introduction. Milton Keynes: Speechmark.
  9. Salvisberg, Jo Ann (2010). Diagnostic Oral Skills Assessment: Developing Flexible Guidelines for Formative Speaking Tests in EFL Classrooms Worldwide. Peter Lang. ISBN   978-3-0343-0470-2.[ page needed ]
  10. 1 2 Bradlow, Ann (April 2016). "Production and perception of clear speech". The Journal of the Acoustical Society of America. 139 (4): 2081. Bibcode:2016ASAJ..139Q2081B. doi:10.1121/1.4950174.
  11. 1 2 3 Hossler, Fred E. (2014). Ear. Hoboken, NJ, USA: John Wiley & Sons, Inc. pp. 797–818.
  12. 1 2 Plomp, R (2002). The intelligent ear: on the nature of sound perception. Mahwah, N.J.: Lawrence Erlbaum Associates.
  13. Katsuki, Yasuji (1982). Receptive mechanisms of sound in the ear. Publisher.