In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). [1] Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.
If the vertices of the cyclic quadrilateral are A, B, C, and D in order, then the theorem states that:
This relation may be verbally expressed as follows:
Moreover, the converse of Ptolemy's theorem is also true:
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle.
Given An equilateral triangle inscribed on a circle and a point on the circle.
The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
Proof: Follows immediately from Ptolemy's theorem:
Any square can be inscribed in a circle whose center is the center of the square. If the common length of its four sides is equal to then the length of the diagonal is equal to according to the Pythagorean theorem, and Ptolemy's relation obviously holds.
More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d2, the right hand side of Ptolemy's relation is the sum a2 + b2.
Copernicus – who used Ptolemy's theorem extensively in his trigonometrical work – refers to this result as a 'Porism' or self-evident corollary:
A more interesting example is the relation between the length a of the side and the (common) length b of the 5 chords in a regular pentagon. By completing the square, the relation yields the golden ratio: [4]
If now diameter AF is drawn bisecting DC so that DF and CF are sides c of an inscribed decagon, Ptolemy's Theorem can again be applied – this time to cyclic quadrilateral ADFC with diameter d as one of its diagonals:
whence the side of the inscribed decagon is obtained in terms of the circle diameter. Pythagoras's theorem applied to right triangle AFD then yields "b" in terms of the diameter and "a" the side of the pentagon [6] is thereafter calculated as
As Copernicus (following Ptolemy) wrote,
The animation here shows a visual demonstration of Ptolemy's theorem, based on Derrick & Herstein (2012). [8]
Let ABCD be a cyclic quadrilateral. On the chord BC, the inscribed angles ∠BAC = ∠BDC, and on AB, ∠ADB = ∠ACB. Construct K on AC such that ∠ABK = ∠CBD; since ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, ∠CBK = ∠ABD.
Now, by common angles △ABK is similar to △DBC, and likewise △ABD is similar to △KBC. Thus AK/AB = CD/BD, and CK/BC = DA/BD; equivalently, AK⋅BD = AB⋅CD, and CK⋅BD = BC⋅DA. By adding two equalities we have AK⋅BD + CK⋅BD = AB⋅CD + BC⋅DA, and factorizing this gives (AK+CK)·BD = AB⋅CD + BC⋅DA. But AK+CK = AC, so AC⋅BD = AB⋅CD + BC⋅DA, Q.E.D. [9]
The proof as written is only valid for simple cyclic quadrilaterals. If the quadrilateral is self-crossing then K will be located outside the line segment AC. But in this case, AK−CK = ±AC, giving the expected result.
Let the inscribed angles subtended by , and be, respectively, , and , and the radius of the circle be , then we have , , , , and , and the original equality to be proved is transformed to
from which the factor has disappeared by dividing both sides of the equation by it.
Now by using the sum formulae, and , it is trivial to show that both sides of the above equation are equal to
Q.E.D.
Here is another, perhaps more transparent, proof using rudimentary trigonometry. Define a new quadrilateral inscribed in the same circle, where are the same as in , and located at a new point on the same circle, defined by , . (Picture triangle flipped, so that vertex moves to vertex and vertex moves to vertex . Vertex will now be located at a new point D’ on the circle.) Then, has the same edges lengths, and consequently the same inscribed angles subtended by the corresponding edges, as , only in a different order. That is, , and , for, respectively, and . Also, and have the same area. Then,
Q.E.D.
Choose an auxiliary circle of radius centered at D with respect to which the circumcircle of ABCD is inverted into a line (see figure). Then Then and can be expressed as , and respectively. Multiplying each term by and using yields Ptolemy's equality.
Q.E.D.
Note that if the quadrilateral is not cyclic then A', B' and C' form a triangle and hence A'B'+B'C' > A'C', giving us a very simple proof of Ptolemy's Inequality which is presented below.
Embed ABCD in the complex plane by identifying as four distinct complex numbers . Define the cross-ratio
Then
with equality if and only if the cross-ratio is a positive real number. This proves Ptolemy's inequality generally, as it remains only to show that lie consecutively arranged on a circle (possibly of infinite radius, i.e. a line) in if and only if .
From the polar form of a complex number , it follows
with the last equality holding if and only if ABCD is cyclic, since a quadrilateral is cyclic if and only if opposite angles sum to .
Q.E.D.
Note that this proof is equivalently made by observing that the cyclicity of ABCD, i.e. the supplementarity and , is equivalent to the condition
in particular there is a rotation of in which this is 0 (i.e. all three products are positive real numbers), and by which Ptolemy's theorem
is then directly established from the simple algebraic identity
In the case of a circle of unit diameter the sides of any cyclic quadrilateral ABCD are numerically equal to the sines of the angles and which they subtend. Similarly the diagonals are equal to the sine of the sum of whichever pair of angles they subtend. We may then write Ptolemy's Theorem in the following trigonometric form:
Applying certain conditions to the subtended angles and it is possible to derive a number of important corollaries using the above as our starting point. In what follows it is important to bear in mind that the sum of angles .
Let and . Then (since opposite angles of a cyclic quadrilateral are supplementary). Then: [10]
Let . The rectangle of corollary 1 is now a symmetrical trapezium with equal diagonals and a pair of equal sides. The parallel sides differ in length by units where:
It will be easier in this case to revert to the standard statement of Ptolemy's theorem:
The cosine rule for triangle ABC.
Let
Then
Therefore,
Formula for compound angle sine (+). [11]
Let . Then . Hence,
Formula for compound angle sine (−). [11]
This derivation corresponds to the Third Theorem as chronicled by Copernicus following Ptolemy in Almagest. In particular if the sides of a pentagon (subtending 36° at the circumference) and of a hexagon (subtending 30° at the circumference) are given, a chord subtending 6° may be calculated. This was a critical step in the ancient method of calculating tables of chords. [12]
This corollary is the core of the Fifth Theorem as chronicled by Copernicus following Ptolemy in Almagest.
Let . Then . Hence
Formula for compound angle cosine (+)
Despite lacking the dexterity of our modern trigonometric notation, it should be clear from the above corollaries that in Ptolemy's theorem (or more simply the Second Theorem) the ancient world had at its disposal an extremely flexible and powerful trigonometric tool which enabled the cognoscenti of those times to draw up accurate tables of chords (corresponding to tables of sines) and to use these in their attempts to understand and map the cosmos as they saw it. Since tables of chords were drawn up by Hipparchus three centuries before Ptolemy, we must assume he knew of the 'Second Theorem' and its derivatives. Following the trail of ancient astronomers, history records the star catalogue of Timocharis of Alexandria. If, as seems likely, the compilation of such catalogues required an understanding of the 'Second Theorem' then the true origins of the latter disappear thereafter into the mists of antiquity but it cannot be unreasonable to presume that the astronomers, architects and construction engineers of ancient Egypt may have had some knowledge of it.
The equation in Ptolemy's theorem is never true with non-cyclic quadrilaterals. Ptolemy's inequality is an extension of this fact, and it is a more general form of Ptolemy's theorem. It states that, given a quadrilateral ABCD, then
where equality holds if and only if the quadrilateral is cyclic. This special case is equivalent to Ptolemy's theorem.
Ptolemy's theorem gives the product of the diagonals (of a cyclic quadrilateral) knowing the sides, the following theorem yields the same for the ratio of the diagonals. [13]
Proof: It is known that the area of a triangle inscribed in a circle of radius is:
Writing the area of the quadrilateral as sum of two triangles sharing the same circumscribing circle, we obtain two relations for each decomposition.
Equating, we obtain the announced formula.
Consequence: Knowing both the product and the ratio of the diagonals, we deduce their immediate expressions:
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .
In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral. Heron's formula can be thought as a special case of the Brahmagupta's formula for triangles.
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.
In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.
Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.
In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral. It works on both convex and concave quadrilaterals, whether it is cyclic or not. The formula also works on crossed quadrilaterals provided that directed angles are used.
In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.
In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.
In probability theory and directional statistics, a circular uniform distribution is a probability distribution on the unit circle whose density is uniform for all angles.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.
The following are important identities in vector algebra. Identities that only involve the magnitude of a vector and the dot product of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product A×B only apply in three dimensions, since the cross product is only defined there. Most of these relations can be dated to founder of vector calculus Josiah Willard Gibbs, if not earlier.
In probability theory, the central limit theorem states conditions under which the average of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed.