Retinol-binding protein

Last updated
Retinol-binding protein (plasma), Human. 1brp.jpg
Retinol-binding protein (plasma), Human.

Retinol-binding proteins (RBP) are a family of proteins with diverse functions. They are carrier proteins that bind retinol. Assessment of retinol-binding protein is used to determine visceral protein mass in health-related nutritional studies.

Contents

Retinol and retinoic acid play crucial roles in the modulation of gene expression and overall development of an embryo. However, deficit or excess of either one of these substances can cause early embryo mortality or developmental malformations. Regulation of transport and metabolism of retinol necessary for a successful pregnancy is accomplished via RBP. Retinol-binding proteins have been identified within the uterus, embryo, and extraembryonic tissue of the bovine, ovine, and porcine, clearly indicating that RBP plays a role in proper retinol exposure to the embryo and successful transport at the maternal-fetal interface. Further research is necessary to determine the exact effects of poor RBP expression on pregnancy and threshold levels for said expression.

Genes

RBP in pregnancy

Retinol plays a crucial role in the growth and differentiation of various body tissues, and it has been previously characterized that embryos are extremely sensitive to alterations in retinol concentration that can lead to spontaneous abortion and malformations occurring during development. [1] [2] Within a mature animal, retinol is transported from the liver via the circulatory system while bound to RBP to the desired target tissue. RBP is also bound to a carrier protein, transthyretin. [3] The process by which RBP releases retinol for cellular availability is still unknown and not concisely determined. [4] [5] [6]

Sites of synthesis

Traditionally, RBP is synthesized within the liver with secretion being dependent upon retinol concentrations. However, the concentrations levels do not appear to have an effect upon transcription of RBP messenger RNA (mRNA) which remains constant. [7] [8] Literature reveals that the bovine endometrium has also been identified as a location of RBP synthesis, as well as, the conceptus and extraembryonic tissues of various livestock species. [9] [10] [11] [12]

Types

  1. Plasma retinol-binding protein, the retinol transport vehicle in serum. [13]
  2. CRBP I/II, cellular-binding proteins involved in transport of retinol and metabolites into retinyl esters for storage or into retinoic acid. [14]
  3. CRABPs, cellular retinoic acid–binding proteins capable of binding retinol and retinoic acid with high affinity. [15] [16] [17] It has also been characterized that CRABPs are involved in many aspects of the retinoic acid signaling pathway such as the regulation and availability of retinoic acid to nuclear receptors. [18]

Presence in livestock species during gestation

Bovine/Ovine

RBP, identical to that found in plasma has been identified in the placental tissues of both the ovine and the bovine, suggesting that RBP may be highly involved in retinol transport and metabolism during pregnancy. [2] [10] However, exact timing of expression had been yet to be identified. An antiserum specific for bovine conceptus RBP and immunohistochemistry has been utilized to identify the presence of RBP at different stages of early pregnancy. [2] Strong immunostaining and hybridization were observed in the trophectoderm of tubular, but not spherical blastocysts at day 13. RBP mRNA was localized to epithelial cells of the chorion, allantois, and amnion at day 45 of pregnancy. [2] Lastly, RBP mRNA was detected in the cotyledons, the fetal contribution to the placenta and the site of attachment to the uterine epithelium for fetal/maternal exchange. [2] Expression of RBP in developing conceptuses, extraembryonic membranes, and at the fetal-maternal interface indicate that there may be some regulation of retinol transport and metabolism that occurs due to RBP by the extraembryonic membranes. [10] Within the uterus of pregnant bovines, it has been found that RBP synthesis in the luminal and glandular epithelium is quite similar to that of a cyclic animal's; however upon reaching day 17 of the estrous cycle, levels of RBP remain constant and continue to gradually rise throughout gestation. [19] It has also been suggested that ovarian steroids may play a role in regulating uterine RBP expression. [19]

Porcine

All three previously mentioned types of retinol-binding proteins (RBP, CRBP, CRABP) have been identified within the porcine placenta during pregnancy via immunohistochemistry. [14] As previously mentioned, retinol and retinoic acid are modulators of gene expression and are necessary for the proper development and growth of a conceptus. [14] Porcine exhibit a diffuse type placenta that has areolar-gland subunits which allows for transport of larger molecules between dam and fetus. RBP and CRBP have been identified in the endometrial glands and areolar trophoblasts, suggesting that RBP is crucial in transport of retinol from the gland to the trophectoderm of the conceptus. [14] RBP expression has also been identified within the yolk sac, myometrium, oviduct, and numerous other fetal tissues. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Vitamin A</span> Essential nutrient

Vitamin A is a fat-soluble vitamin and an essential nutrient for animals. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinal, retinoic acid, and several provitamin (precursor) carotenoids, most notably beta-carotene. Vitamin A has multiple functions: it is essential for embryo development and growth, for maintenance of the immune system, and for vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light and color vision.

<span class="mw-page-title-main">Retinol</span> Chemical compound

Retinol, also called vitamin A1, is a fat-soluble vitamin in the vitamin A family that is found in food and used as a dietary supplement. Retinol or other forms of vitamin A are needed for vision, cellular development, maintenance of skin and mucous membranes, immune function and reproductive development. Dietary sources include fish, dairy products, and meat. As a supplement it is used to treat and prevent vitamin A deficiency, especially that which results in xerophthalmia. It is taken by mouth or by injection into a muscle. As an ingredient in skin-care products, it is used to reduce wrinkles and other effects of skin aging.

Interferon tau is a Type I interferon made of a single chain of amino acids. IFN-τ was first discovered in ruminants as the signal for the maternal recognition of pregnancy and originally named ovine trophoblast protein-1 (oTP-1). It has many physiological functions in the mammalian uterus, and also has anti-inflammatory effect that aids in the protection of the semi-allogeneic conceptus trophectoderm from the maternal immune system.

<span class="mw-page-title-main">Retinoic acid</span> Metabolite of vitamin A

Retinoic acid (used simplified here for all-trans-retinoic acid) is a metabolite of vitamin A1 (all-trans-retinol) that mediates the functions of vitamin A1 required for growth and development. All-trans-retinoic acid is required in chordate animals, which includes all higher animals from fish to humans. During early embryonic development, all-trans-retinoic acid generated in a specific region of the embryo helps determine position along the embryonic anterior/posterior axis by serving as an intercellular signaling molecule that guides development of the posterior portion of the embryo. It acts through Hox genes, which ultimately control anterior/posterior patterning in early developmental stages.

<i>Jaagsiekte sheep retrovirus</i> Species of virus

Jaagsiekte sheep retrovirus (JSRV) is a betaretrovirus which is the causative agent of a contagious lung cancer in sheep, called ovine pulmonary adenocarcinoma.

The retinoid X receptor (RXR) is a type of nuclear receptor that is activated by 9-cis retinoic acid, which is discussed controversially to be of endogenous relevance, and 9-cis-13,14-dihydroretinoic acid, which is likely to be the major endogenous mammalian RXR-selective agonist.

Vitamin A receptor, Stimulated by retinoic acid 6 or STRA6 protein was originally discovered as a transmembrane cell-surface receptor for retinol-binding protein. STRA6 is unique as it functions both as a membrane transporter and a cell surface receptor, particularly as a cytokine receptor. In fact, STRA6 may be the first of a whole new class of proteins that might be known as "cytokine signaling transporters." STRA6 is primarily known as the receptor for retinol binding protein and for its relevance in the transport of retinol to specific sites such as the eye. It does this through the removal of retinol (ROH) from the holo-Retinol Binding Protein (RBP) and transports it into the cell to be metabolized into retinoids and/or kept as a retinylester. As a receptor, after holo-RBP is bound, STRA6 activates the JAK/STAT pathway, resulting in the activation of transcription factor, STAT5. These two functions—retinol transporter and cytokine receptor—while using different pathways, are processes that depend on each other.

<span class="mw-page-title-main">Retinol binding protein 4</span> Protein-coding gene in the species Homo sapiens

Retinol binding protein 4, also known as RBP4, is a transporter protein for retinol. RBP4 has a molecular weight of approximately 21 kDa and is encoded by the RBP4 gene in humans. It is mainly, though not exclusively, synthesized in the liver and circulates in the bloodstream as a hepatokine bound to retinol in a complex with transthyretin. RBP4 has been a drug target for ophthalmology research due to its role in vision. RBP4 may also be involved in metabolic diseases as suggested by recent studies.

The visual cycle is a process in the retina that replenishes the molecule retinal for its use in vision. Retinal is the chromophore of most visual opsins, meaning it captures the photons to begin the phototransduction cascade. When the photon is absorbed, the 11-cis retinal photoisomerizes into all-trans retinal as it is ejected from the opsin protein. Each molecule of retinal must travel from the photoreceptor cell to the RPE and back in order to be refreshed and combined with another opsin. This closed enzymatic pathway of 11-cis retinal is sometimes called Wald's visual cycle after George Wald (1906–1997), who received the Nobel Prize in 1967 for his work towards its discovery.

<span class="mw-page-title-main">Retinoic acid receptor beta</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor beta (RAR-beta), also known as NR1B2 is a nuclear receptor that in humans is encoded by the RARB gene.

<span class="mw-page-title-main">Retinoic acid receptor gamma</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor gamma (RAR-γ), also known as NR1B3 is a nuclear receptor encoded by the RARG gene. Adapalene selectively targets retinoic acid receptor beta and retinoic acid receptor gamma and its agonism of the gamma subtype is largely responsible for adapalene's observed effects.

<span class="mw-page-title-main">CRABP2</span> Protein-coding gene in the species Homo sapiens

Cellular retinoic acid-binding protein 2 is a cytoplasmic binding protein that in humans is encoded by the CRABP2 gene.

<span class="mw-page-title-main">Retinaldehyde-binding protein 1</span> Protein-coding gene in the species Homo sapiens

Retinaldehyde-binding protein 1 (RLBP1) also known as cellular retinaldehyde-binding protein (CRALBP) is a 36-kD water-soluble protein that in humans is encoded by the RLBP1 gene.

<span class="mw-page-title-main">RBP1</span> Protein-coding gene in the species Homo sapiens

Retinol binding protein 1, cellular, also known as RBP1, is a protein that in humans is encoded by the RBP1 gene.

<span class="mw-page-title-main">CRABP1</span> Protein-coding gene in the species Homo sapiens

Cellular retinoic acid-binding protein 1 is a protein that in humans is encoded by the CRABP1 gene.

<span class="mw-page-title-main">RBP2</span> Protein-coding gene in humans

Retinol-binding protein 2 (RBP2) is a protein that in humans is encoded by the RBP2 gene.

<span class="mw-page-title-main">RARRES1</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor responder protein 1 is a protein that in humans is encoded by the RARRES1 gene.

Gonocytes are the precursors of spermatogonia that differentiate in the testis from primordial germ cells around week 7 of embryonic development and exist up until the postnatal period, when they become spermatogonia. Despite some uses of the term to refer to the precursors of oogonia, it was generally restricted to male germ cells. Germ cells operate as vehicles of inheritance by transferring genetic and epigenetic information from one generation to the next. Male fertility is centered around continual spermatogonia which is dependent upon a high stem cell population. Thus, the function and quality of a differentiated sperm cell is dependent upon the capacity of its originating spermatogonial stem cell (SSC).

Uterine serpins are members of the A clade of the serine protease inhibitor (serpin) superfamily of proteins and are encoded by the SERPINA14 gene. Uterine serpins are produced by the endometrium of a restricted group of mammals under the influence of progesterone or estrogen. These proteins appear to be inactive protease inhibitors and may function during pregnancy to regulate immune function or participate in transplacental transport.

Gut-specific homing is the mechanism by which activated T cells and antibody-secreting cells (ASCs) are targeted to both inflamed and non-inflamed regions of the gut in order to provide an effective immune response. This process relies on the key interaction between the integrin α4β7 and the addressin MadCAM-1 on the surfaces of the appropriate cells. Additionally, this interaction is strengthened by the presence of CCR9, a chemokine receptor, which interacts with TECK. Vitamin A-derived retinoic acid regulates the expression of these cell surface proteins.

References

  1. Wolf G (July 1984). "Multiple functions of vitamin A". Physiological Reviews. 64 (3): 873–937. doi:10.1152/physrev.1984.64.3.873. PMID   6377341.
  2. 1 2 3 4 5 Liu KH, Doré JJ, Roberts MP, Krishnan R, Hopkins FM, Godkin JD (August 1993). "Expression and cellular localization of retinol-binding protein messenger ribonucleic acid in bovine blastocysts and extraembryonic membranes". Biology of Reproduction. 49 (2): 393–400. doi: 10.1095/biolreprod49.2.393 . PMID   8373966.
  3. Hendriks HF, Brouwer A, Knook DL (1987). "The role of hepatic fat-storing (stellate) cells in retinoid metabolism". Hepatology. 7 (6): 1368–71. doi: 10.1002/hep.1840070630 . PMID   3315935. S2CID   44339135.
  4. Hodam JR, St Hilaire P, Creek KE (August 1991). "Comparison of the rate of uptake and biologic effects of retinol added to human keratinocytes either directly to the culture medium or bound to serum retinol-binding protein". The Journal of Investigative Dermatology. 97 (2): 298–304. doi:10.1111/1523-1747.ep12480562. PMID   2071940.
  5. MacDonald PN, Bok D, Ong DE (June 1990). "Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human". Proceedings of the National Academy of Sciences of the United States of America. 87 (11): 4265–9. Bibcode:1990PNAS...87.4265M. doi: 10.1073/pnas.87.11.4265 . PMC   54089 . PMID   2190219.
  6. van Bennekum AM, Blaner WS, Seifert-Bock I, Moukides M, Brouwer A, Hendriks HF (February 1993). "Retinol uptake from retinol-binding protein (RBP) by liver parenchymal cells in vitro does not specifically depend on its binding to RBP". Biochemistry. 32 (7): 1727–33. doi:10.1021/bi00058a005. PMID   8439537.
  7. Blaner WS, Hendriks HF, Brouwer A, de Leeuw AM, Knook DL, Goodman DS (October 1985). "Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells". Journal of Lipid Research. 26 (10): 1241–51. doi: 10.1016/S0022-2275(20)34272-3 . PMID   4067418.
  8. Soprano DR, Soprano KJ, Goodman DS (February 1986). "Retinol-binding protein messenger RNA levels in the liver and in extrahepatic tissues of the rat". Journal of Lipid Research. 27 (2): 166–71. doi: 10.1016/S0022-2275(20)38843-X . PMID   3754273.
  9. 1 2 Harney JP, Smith LC, Simmen RC, Fliss AE, Bazer FW (May 1994). "Retinol-binding protein: immunolocalization of protein and abundance of messenger ribonucleic acid in conceptus and maternal tissues during pregnancy in pigs". Biology of Reproduction. 50 (5): 1126–35. doi: 10.1095/biolreprod50.5.1126 . PMID   8025169.
  10. 1 2 3 Liu KH, Godkin JD (December 1992). "Characterization and immunolocalization of bovine uterine retinol-binding protein". Biology of Reproduction. 47 (6): 1099–104. doi: 10.1095/biolreprod47.6.1099 . PMID   1493174.
  11. Liu KH, Gao KX, Baumbach GA, Godkin JD (January 1992). "Purification and immunolocalization of ovine placental retinol-binding protein". Biology of Reproduction. 46 (1): 23–9. doi: 10.1095/biolreprod46.1.23 . PMID   1547313.
  12. Thomas DG, James SL, Fudge A, Odgers C, Teubner J, Simmer K (June 1991). "Delivery of vitamin A from parenteral nutrition solutions in neonates". Journal of Paediatrics and Child Health. 27 (3): 180–3. doi:10.1111/j.1440-1754.1991.tb00382.x. PMID   1909535. S2CID   9670196.
  13. Soprano DR, Gyda M, Jiang H, Harnish DC, Ugen K, Satre M, Chen L, Soprano KJ, Kochhar DM (March 1994). "A sustained elevation in retinoic acid receptor-beta 2 mRNA and protein occurs during retinoic acid-induced fetal dysmorphogenesis". Mechanisms of Development. 45 (3): 243–53. doi:10.1016/0925-4773(94)90011-6. PMID   8011556. S2CID   46392586.
  14. 1 2 3 4 Johansson S, Dencker L, Dantzer V (January 2001). "Immunohistochemical localization of retinoid binding proteins at the materno-fetal interface of the porcine epitheliochorial placenta". Biology of Reproduction. 64 (1): 60–8. doi: 10.1095/biolreprod64.1.60 . PMID   11133659.
  15. Li E, Norris AW (1996). "Structure/function of cytoplasmic vitamin A-binding proteins". Annual Review of Nutrition. 16: 205–34. doi:10.1146/annurev.nutr.16.1.205. PMID   8839926.
  16. Napoli JL, Boerman MH, Chai X, Zhai Y, Fiorella PD (June 1995). "Enzymes and binding proteins affecting retinoic acid concentrations". The Journal of Steroid Biochemistry and Molecular Biology. 53 (1–6): 497–502. doi:10.1016/0960-0760(95)00096-i. PMID   7626500. S2CID   10670925.
  17. Napoli, J.L. (1996). "Retinoic acid biosynthesis and metabolism". The FASEB Journal. 10 (9): 993–1001. doi: 10.1096/fasebj.10.9.8801182 . PMID   8801182. S2CID   26008872.
  18. Gustafson AL, Donovan M, Annerwall E, Dencker L, Eriksson U (August 1996). "Nuclear import of cellular retinoic acid-binding protein type I in mouse embryonic cells". Mechanisms of Development. 58 (1–2): 27–38. doi: 10.1016/s0925-4773(96)00554-0 . PMID   8887314. S2CID   18772488.
  19. 1 2 MacKenzie SH, Roberts MP, Liu KH, Doré JJ, Godkin JD (December 1997). "Bovine endometrial retinol-binding protein secretion, messenger ribonucleic acid expression, and cellular localization during the estrous cycle and early pregnancy". Biology of Reproduction. 57 (6): 1445–50. doi: 10.1095/biolreprod57.6.1445 . PMID   9408253.

Further reading