Saccharibacteria

Last updated

Saccharibacteria
41396 2020 736 Fig4 HTML.webp
Ca. Nanosynbacter lyticus (aka TM7x, green) and bacterial hosts (red).
Scale bars are 5 μm.
Scientific classification
Domain:
(unranked):
Phylum:
Saccharibacteria

Albertsen et al. 2013
Class:
"Saccharimonadia"

corrig. McLean et al. 2020
Order:
"Saccharimonadales"

corrig. McLean et al. 2020
Famlies
  • "Nanogingivalaceae"
  • "Nanoperiodontomorbaceae"
  • "Nanosynbacteraceae"
  • "Nanosyncoccaceae"
  • "Saccharimonadaceae"
Synonyms
  • Candidate division TM7

Saccharibacteria, formerly known as TM7, [1] is a major bacterial lineage. It was discovered through 16S rRNA sequencing . [2]

Contents

TM7x from the human oral cavity was cultivated and revealed that TM7x is an extremely small coccus (200-300 nm) and has a distinctive lifestyle not previously observed in human-associated microbes. [3] It is an obligate epibiont of various hosts, including Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase thereby killing its host. The full genome sequence revealed a highly reduced genome (705kB) [4] and a complete lack of amino acid biosynthetic capacity. An axenic culture of TM7 from the oral cavity was reported in 2014 but no sequence or culture was made available. [5]

Along with Candidate Phylum TM6, [6] it was named after sequences obtained in 1994 in an environmental study of a soil sample of peat bog in Germany where 262 PCR amplified 16S rDNA fragments were cloned into a plasmid vector, named TM clones for Torf, Mittlere Schicht (lit. peat, middle layer). [7] It has been found in several environments since such as from activated sludges, [8] [9] water treatment plant sludge [10] rainforest soil, [11] human saliva, [12] [13] in association with sponges, [14] cockroaches, [15] gold mines, [16] acetate-amended aquifer sediment, [17] and other environments (bar thermophilic), making it an abundant and widespread phylum. Recently, TM7 rDNA and whole-cells were detected in activated sludge with >99.7% identity to a human skin TM7 and 98.6% identity to the human oral TM7a, [18] suggesting metabolically active TM7 isolates in environmental sites may serve as model organisms to investigate the role TM7 species play in human health.

Properties

TM7 specific FISH probes identified species from a bioreactor sludge revealed the presence of a gram-positive cell envelopes and several morphotypes: a sheathed filament (abundant), a rod occurring in short chains, a thick filament and cocci; the former may be the cause of Eikelboom type 0041 (bulking problems of activated sludges). [10] The majority of bacterial phyla are Gram-negative diderms, whereas only the Bacillota, the Actinomycetota and Chloroflexota are monoderms. [19]

Using a polycarbonate membrane as a growth support and soil extract as the substrate, microcolonies of this clade were grown consisting of long filamentous rods up to 15 μm long with less than 50 cells or short rods with several hundred cells per colony, after 10 days incubation. [20]

Thanks to a microfluidic chip allowing the isolation and amplification of the genome of a single cell, the genome of 3 long filament morphology cells with identical 16S rRNA were sequenced to create a draft sequence of the genome confirming some previously ascertained properties, elucidating some of its metabolic capabilities, revealing novel genes and hinting to potential pathogenic abilities. [21]

Over 50 different phylotypes have been identified [19] and it has a relatively modest intradivision 16S rDNA sequence divergence of 17%, which ranges from 13 to 33%. [10] An interactive phylogenetic tree of TM7, [18] built using jsPhyloSVG, [22] allows for quick access to GenBank sequences and distance matrix calculations between tree branches.

Stable-isotope probing studies have found that some members of this phylum can degrade toluene. [23] [24]

Taxonomy

Phylogeny of Saccharibacteria [25] [26] [27] [28]

"Ca. Nanoperiodontomorbus"

"Ca. Nanosynbacter"

"Ca. Microsaccharimonas"

"Ca. Saccharimonas"

"Ca. Nanogingivalis"

"Ca. Nanosyncoccus"

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [29] and National Center for Biotechnology Information (NCBI) [1]

Phylogeny

TM7 Candidate Division neighbor-joining phylogenetic tree Tm7 bacteria phylogenetic tree.svg
TM7 Candidate Division neighbor-joining phylogenetic tree
Relationship of phylum TM7 and its closest relatives [19] Simplified phylogenetic tree of named subgroups according to Dinis et al. 2011. [18]

Chloroflexota (outgroup)

Patescibacteria
Parcubacteria group [30] [31]

ABY1
(OD1-ABY1) [30]

Gracilibacteria
(BD1-5 group)

(OD1)

Microgenomates
(OP11 group)

Dojkabacteria
(WS6)

Saccharibacteria
(TM7)

SC3

WS5 [32] [33] [34]

Guaymas1
(Thermodesulfobacteriota-related) [35]

(CPR)
Saccharibacteria

Saccharibacteria I

Saccharibacteria II

Saccharibacteria IV

TM7a group

Saccharibacteria III

See also

Related Research Articles

<span class="mw-page-title-main">Actinomycetota</span> Phylum of bacteria

The Actinomycetota are a diverse phylum of gram-positive bacteria with high G+C content. They can be terrestrial or aquatic. They are of great economic importance to humans because agriculture and forests depend on their contributions to soil systems. In soil they help to decompose the organic matter of dead organisms so the molecules can be taken up anew by plants. While this role is also played by fungi, Actinomycetota are much smaller and likely do not occupy the same ecological niche. In this role the colonies often grow extensive mycelia, like a fungus would, and the name of an important order of the phylum, Actinomycetales, reflects that they were long believed to be fungi. Some soil actinomycetota live symbiotically with the plants whose roots pervade the soil, fixing nitrogen for the plants in exchange for access to some of the plant's saccharides. Other species, such as many members of the genus Mycobacterium, are important pathogens.

<span class="mw-page-title-main">Acidobacteriota</span> Phylum of bacteria

Acidobacteriota is a phylum of Gram-negative bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.

<span class="mw-page-title-main">Verrucomicrobiota</span> Phylum of bacteria

Verrucomicrobiota is a phylum of Gram-negative bacteria that contains only a few described species. The species identified have been isolated from fresh water, marine and soil environments and human faeces. A number of as-yet uncultivated species have been identified in association with eukaryotic hosts including extrusive explosive ectosymbionts of protists and endosymbionts of nematodes residing in their gametes.

<span class="mw-page-title-main">Anammox</span> Anaerobic ammonium oxidation, a microbial process of the nitrogen cycle

Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water.

Fibrobacterota is a small bacterial phylum which includes many of the major rumen bacteria, allowing for the degradation of plant-based cellulose in ruminant animals. Members of this phylum were categorized in other phyla. The genus Fibrobacter was removed from the genus Bacteroides in 1988.

<span class="mw-page-title-main">16S ribosomal RNA</span> RNA component

16S ribosomal RNA is the RNA component of the 30S subunit of a prokaryotic ribosome. It binds to the Shine-Dalgarno sequence and provides most of the SSU structure.

The Chloroflexota are a phylum of bacteria containing isolates with a diversity of phenotypes, including members that are aerobic thermophiles, which use oxygen and grow well in high temperatures; anoxygenic phototrophs, which use light for photosynthesis ; and anaerobic halorespirers, which uses halogenated organics as electron acceptors.

<span class="mw-page-title-main">Nitrososphaerota</span> Phylum of archaea

The Nitrososphaerota are a phylum of the Archaea proposed in 2008 after the genome of Cenarchaeum symbiosum was sequenced and found to differ significantly from other members of the hyperthermophilic phylum Thermoproteota. Three described species in addition to C. symbiosum are Nitrosopumilus maritimus, Nitrososphaera viennensis, and Nitrososphaera gargensis. The phylum was proposed in 2008 based on phylogenetic data, such as the sequences of these organisms' ribosomal RNA genes, and the presence of a form of type I topoisomerase that was previously thought to be unique to the eukaryotes. This assignment was confirmed by further analysis published in 2010 that examined the genomes of the ammonia-oxidizing archaea Nitrosopumilus maritimus and Nitrososphaera gargensis, concluding that these species form a distinct lineage that includes Cenarchaeum symbiosum. The lipid crenarchaeol has been found only in Nitrososphaerota, making it a potential biomarker for the phylum. Most organisms of this lineage thus far identified are chemolithoautotrophic ammonia-oxidizers and may play important roles in biogeochemical cycles, such as the nitrogen cycle and the carbon cycle. Metagenomic sequencing indicates that they constitute ~1% of the sea surface metagenome across many sites.

Nitrospirota is a phylum of bacteria. It includes multiple genera, such as Nitrospira, the largest. The first member of this phylum, Nitrospira marina, was discovered in 1985. The second member, Nitrospira moscoviensis, was discovered in 1995.

<span class="mw-page-title-main">Bacterial phyla</span> Phyla or divisions of the domain Bacteria

Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.

The phylum Elusimicrobiota, previously known as "Termite Group 1", has been shown to be widespread in different ecosystems like marine environment, sewage sludge, contaminated sites and soils, and toxic wastes. The high abundance of Elusimicrobiota representatives is only seen for the lineage of symbionts found in termites and ants.

Nanohaloarchaea is a clade of diminutive archaea with small genomes and limited metabolic capabilities, belonging to the DPANN archaea. They are ubiquitous in hypersaline habitats, which they share with the extremely halophilic haloarchaea.

Sodalis is a genus of bacteria within the family Pectobacteriaceae. This genus contains several insect endosymbionts and also a free-living group. It is studied due to its potential use in the biological control of the tsetse fly. Sodalis is an important model for evolutionary biologists because of its nascent endosymbiosis with insects.

<span class="mw-page-title-main">DPANN</span> A superphylum of Archaea grouping taxa that display various environmental and metabolic features

DPANN is a superphylum of Archaea first proposed in 2013. Many members show novel signs of horizontal gene transfer from other domains of life. They are known as nanoarchaea or ultra-small archaea due to their smaller size (nanometric) compared to other archaea.

<span class="mw-page-title-main">Atribacterota</span> Phylum of bacteria

Atribacterota is a phylum of bacteria, which are common in anoxic sediments rich in methane. They are distributed worldwide and in some cases abundant in anaerobic marine sediments, geothermal springs, and oil deposits. Genetic analyzes suggest a heterotrophic metabolism that gives rise to fermentation products such as acetate, ethanol, and CO2. These products in turn can support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacterota in methane-rich anoxic sediments. According to phylogenetic analysis, Atribacterota appears to be related to several thermophilic phyla within Terrabacteria or may be in the base of Gracilicutes. According to research, Atribacterota shows patterns of gene expressions which consists of fermentative, acetogenic metabolism. These expressions let Atribacterota to be able to create catabolic and anabolic functions which are necessary to generate cellular reproduction, even when the energy levels are limited due to the depletion of dissolved oxygen in the areas of sea waters, fresh waters, or ground waters.

<span class="mw-page-title-main">Candidate phyla radiation</span> A large evolutionary radiation of bacterial candidate phyla and superphyla

The candidate phyla radiation is a large evolutionary radiation of bacterial lineages whose members are mostly uncultivated and only known from metagenomics and single cell sequencing. They have been described as nanobacteria or ultra-small bacteria due to their reduced size (nanometric) compared to other bacteria.

TM7x, also known as Nanosynbacter lyticus type strain TM7x HMT 952. is a phylotype of one of the most enigmatic phyla, Candidatus Saccharibacteria, formerly candidate phylum TM7. It is the only member of the candidate phylum that has been cultivated successfully from the human oral cavity, and stably maintained in vitro. and serves as a crucial paradigm. of the newly described Candidate Phyla Radiation (CPR). The cultivated oral taxon is designated as Saccharibacteria oral taxon TM7x. TM7x has a unique lifestyle in comparison to other bacteria that are associated with humans. It is an obligate epibiont parasite, or an "epiparasite", growing on the surface of its host bacterial species Actinomyces odontolyticus subspecies actinosynbacter strain XH001, which is referred to as the "basibiont". Actinomyces species are one of the early microbial colonizers in the oral cavity. Together, they exhibit parasitic epibiont symbiosis.

Modulibacteria is a bacterial phylum formerly known as KS3B3 or GN06. It is a candidate phylum, meaning there are no cultured representatives of this group. Members of the Modulibacteria phylum are known to cause fatal filament overgrowth (bulking) in high-rate industrial anaerobic wastewater treatment bioreactors.

<span class="mw-page-title-main">NC10 phylum</span> Phylum of bacteria

NC10 is a bacterial phylum with candidate status, meaning its members remain uncultured to date. The difficulty in producing lab cultures may be linked to low growth rates and other limiting growth factors.

References

  1. 1 2 Sayers; et al. "Saccharibacteria". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-03-20.
  2. Pace, N. R. (2009). "Mapping the Tree of Life: Progress and Prospects". Microbiology and Molecular Biology Reviews. 73 (4): 565–576. doi:10.1128/MMBR.00033-09. PMC   2786576 . PMID   19946133.
  3. He, Xuesong; McLean, Jeffrey S.; Edlund, Anna; Yooseph, Shibu; Hall, Adam P.; Liu, Su-Yang; Dorrestein, Pieter C.; Esquenazi, Eduardo; Hunter, Ryan C. (2015-01-06). "Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle". Proceedings of the National Academy of Sciences. 112 (1): 244–249. Bibcode:2015PNAS..112..244H. doi: 10.1073/pnas.1419038112 . ISSN   0027-8424. PMC   4291631 . PMID   25535390.
  4. "Candidatus Saccharibacteria oral taxon TM7x (ID 241438) - BioProject - NCBI".
  5. Soro, V. (2014). "Axenic Culture of a Candidate Division TM7 Bacterium from the Human Oral Cavity and Biofilm Interactions with Other Oral Bacteria". Applied and Environmental Microbiology . 80 (20): 6480–6489. Bibcode:2014ApEnM..80.6480S. doi:10.1128/AEM.01827-14. PMC   4178647 . PMID   25107981.
  6. McLean, Jeffrey S.; Lombardo, Mary-Jane; Badger, Jonathan H.; Edlund, Anna; Novotny, Mark; Yee-Greenbaum, Joyclyn; Vyahhi, Nikolay; Hall, Adam P.; Yang, Youngik (2013-06-25). "Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum". Proceedings of the National Academy of Sciences. 110 (26): E2390–E2399. Bibcode:2013PNAS..110E2390M. doi: 10.1073/pnas.1219809110 . ISSN   0027-8424. PMC   3696752 . PMID   23754396.
  7. Rheims, H.; Rainey, F. A.; Stackebrandt, E. (1996). "A molecular approach to search for diversity among bacteria in the environment". Journal of Industrial Microbiology & Biotechnology. 17 (3–4): 159–169. doi: 10.1007/BF01574689 . S2CID   31868442.
  8. Bond, PL; Hugenholtz, P; Keller, J; Blackall, LL (1995). "Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors". Applied and Environmental Microbiology. 61 (5): 1910–6. Bibcode:1995ApEnM..61.1910B. doi:10.1128/AEM.61.5.1910-1916.1995. PMC   167453 . PMID   7544094.
  9. Godon, JJ; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R (1997). "Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis". Applied and Environmental Microbiology. 63 (7): 2802–13. Bibcode:1997ApEnM..63.2802G. doi:10.1128/AEM.63.7.2802-2813.1997. PMC   168577 . PMID   9212428.
  10. 1 2 3 Hugenholtz, P.; Tyson, G. W.; Webb, R. I.; Wagner, A. M.; Blackall, L. L. (2001). "Investigation of Candidate Division TM7, a Recently Recognized Major Lineage of the Domain Bacteria with No Known Pure-Culture Representatives". Applied and Environmental Microbiology. 67 (1): 411–419. Bibcode:2001ApEnM..67..411H. doi:10.1128/AEM.67.1.411-419.2001. PMC   92593 . PMID   11133473.
  11. Borneman, J; Triplett, EW (1997). "Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation". Applied and Environmental Microbiology. 63 (7): 2647–53. Bibcode:1997ApEnM..63.2647B. doi:10.1128/AEM.63.7.2647-2653.1997. PMC   168563 . PMID   9212415.
  12. Lazarevic, V.; Whiteson, K.; Hernandez, D.; Francois, P.; Schrenzel, J. (2010). "Study of inter- and intra-individual variations in the salivary microbiota". BMC Genomics. 11: 523. doi: 10.1186/1471-2164-11-523 . PMC   2997015 . PMID   20920195.
  13. Dewhirst, F. E.; Chen, T.; Izard, J.; Paster, B. J.; Tanner, A. C. R.; Yu, W. -H.; Lakshmanan, A.; Wade, W. G. (2010). "The Human Oral Microbiome". Journal of Bacteriology. 192 (19): 5002–5017. doi:10.1128/JB.00542-10. PMC   2944498 . PMID   20656903.
  14. Thiel, V.; Leininger, S.; Schmaljohann, R.; Brümmer, F.; Imhoff, J. F. (2007). "Sponge-specific Bacterial Associations of the Mediterranean Sponge Chondrilla nucula (Demospongiae, Tetractinomorpha)". Microbial Ecology. 54 (1): 101–111. doi:10.1007/s00248-006-9177-y. PMID   17364249. S2CID   34564973.
  15. Berlanga, M; Paster, BJ; Guerrero, R (2009). "The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host". International Microbiology. 12 (4): 227–36. PMID   20112227.
  16. Rastogi, G.; Stetler, L. D.; Peyton, B. M.; Sani, R. K. (2009). "Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA". The Journal of Microbiology. 47 (4): 371–384. doi:10.1007/s12275-008-0249-1. PMID   19763410. S2CID   7972151.
  17. Kantor, Rose S.; Wrighton, Kelly C.; Handley, Kim M.; Sharon, Itai; Hug, Laura A.; Castelle, Cindy J.; Thomas, Brian C.; Banfield, Jillian F. (2013-01-01). "Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla". mBio. 4 (5): e00708–00713. doi:10.1128/mBio.00708-13. ISSN   2150-7511. PMC   3812714 . PMID   24149512.
  18. 1 2 3 4 Dinis, J. M.; Barton, D. E.; Ghadiri, J.; Surendar, D.; Reddy, K.; Velasquez, F.; Chaffee, C. L.; Lee, M. C. W.; Gavrilova, H.; Ozuna, H.; Smits, S. A.; Ouverney, C. C. (2011). Yang, Ching-Hong (ed.). "In Search of an Uncultured Human-Associated TM7 Bacterium in the Environment". PLOS ONE. 6 (6): e21280. Bibcode:2011PLoSO...621280D. doi: 10.1371/journal.pone.0021280 . PMC   3118805 . PMID   21701585.
  19. 1 2 3 Rappe, M. S.; Giovannoni, S. J. (2003). "The Uncultured Microbial Majority". Annual Review of Microbiology. 57: 369–394. doi:10.1146/annurev.micro.57.030502.090759. PMID   14527284.
  20. Ferrari, B. C.; Binnerup, S. J.; Gillings, M. (2005). "Microcolony Cultivation on a Soil Substrate Membrane System Selects for Previously Uncultured Soil Bacteria". Applied and Environmental Microbiology. 71 (12): 8714–8720. Bibcode:2005ApEnM..71.8714F. doi:10.1128/AEM.71.12.8714-8720.2005. PMC   1317317 . PMID   16332866.
  21. Marcy, Y.; Ouverney, C.; Bik, E. M.; Losekann, T.; Ivanova, N.; Martin, H. G.; Szeto, E.; Platt, D.; Hugenholtz, P.; Relman, D. A.; Quake, S. R. (2007). "Inaugural Article: Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth". Proceedings of the National Academy of Sciences. 104 (29): 11889–11894. Bibcode:2007PNAS..10411889M. doi: 10.1073/pnas.0704662104 . PMC   1924555 . PMID   17620602.
  22. Smits, S. A.; Ouverney, C. C. (2010). Poon, Art F. Y. (ed.). "JsPhyloSVG: A Javascript Library for Visualizing Interactive and Vector-Based Phylogenetic Trees on the Web". PLOS ONE. 5 (8): e12267. Bibcode:2010PLoSO...512267S. doi: 10.1371/journal.pone.0012267 . PMC   2923619 . PMID   20805892.
  23. Xie, S.; Sun, W.; Luo, C.; Cupples, A. M. (2010). "Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing". Biodegradation. 22 (1): 71–81. doi:10.1007/s10532-010-9377-5. PMID   20549308. S2CID   9840162.
  24. Luo, C.; Xie, S.; Sun, W.; Li, X.; Cupples, A. M. (2009). "Identification of a Novel Toluene-Degrading Bacterium from the Candidate Phylum TM7, as Determined by DNA Stable Isotope Probing". Applied and Environmental Microbiology. 75 (13): 4644–4647. Bibcode:2009ApEnM..75.4644L. doi:10.1128/AEM.00283-09. PMC   2704817 . PMID   19447956.
  25. Mendler, K; Chen, H; Parks, DH; Hug, LA; Doxey, AC (2019). "AnnoTree: visualization and exploration of a functionally annotated microbial tree of life". Nucleic Acids Research. 47 (9): 4442–4448. doi: 10.1093/nar/gkz246 . PMC   6511854 . PMID   31081040. Archived from the original on 2021-04-23. Retrieved 2021-07-21.
  26. "GTDB release 07-RS207". Genome Taxonomy Database . Retrieved 20 June 2022.
  27. "bac120_r207.sp_labels". Genome Taxonomy Database . Retrieved 20 June 2022.
  28. "Taxon History". Genome Taxonomy Database . Retrieved 20 June 2022.
  29. J.P. Euzéby. "Saccharibacteria". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-06-27.
  30. 1 2 C. L. Schoch, Sayers et al.: Parcubacteria group, Parcubacteria group (clade/superphylum, syn. candidate division OD1); National Center for Biotechnology Information (NCBI)
  31. Damien M. de Vienne: Parcubacteria group, NCBI Lifemap, University of Lyon. Lifemap is an interactive tool to explore NCBI taxonomy.
  32. Michael A. Dojka, Philip Hugenholtz, Sheridan K. Haack, Norman R. Pace: Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. In: ASM Appl. Environ. Microbiol. 64(10): 3869-3877. 29 October 2020. doi:10.1128/AEM.64.10.3869-3877.1998. PMID 9758812. PMC   PMC106571
  33. C. L. Schoch, Sayers et al.: candidate division WS5, candidate division WS5 (clade, syn. candidate division Wurtsmith 5); National Center for Biotechnology Information (NCBI)
  34. Damien M. de Vienne: environmental samples - candidate division WS5, NCBI Lifemap, University of Lyon. Lifemap is an interactive tool to explore NCBI taxonomy.
  35. Fredrik Bäckhed, Ruth Ley, Justin L Sonnenburg, Daniel A. Peterson, Jeffrey I. Gordon: Host‐Bacterial Mutualism in the Human Intestine. In: Science 307(5717): 1915-1920. April 2005. doi:10.1126/science.1104816. PMID   15790844