Schur's lemma (Riemannian geometry)

Last updated

In Riemannian geometry, Schur's lemma is a result that says, heuristically, whenever certain curvatures are pointwise constant then they are forced to be globally constant. The proof is essentially a one-step calculation, which has only one input: the second Bianchi identity.

Contents

The Schur lemma for the Ricci tensor

Suppose is a smooth Riemannian manifold with dimension Recall that this defines for each element of :

The Schur lemma states the following:

Suppose that is not equal to two. If there is a function on such that for all then Equivalently, is constant on each connected component of ; this could also be phrased as asserting that each connected component of is an Einstein manifold.

The Schur lemma is a simple consequence of the "twice-contracted second Bianchi identity," which states that understood as an equality of smooth 1-forms on Substituting in the given condition one finds that

Alternative formulations of the assumptions

Let be a symmetric bilinear form on an -dimensional inner product space Then Additionally, note that if for some number then one automatically has { With these observations in mind, one can restate the Schur lemma in the following form:

Let be a connected smooth Riemannian manifold whose dimension is not equal to two. Then the following are equivalent:

  • There is a function on such that for all
  • There is a number such that for all that is, is Einstein
  • One has for all that is, the traceless Ricci tensor is zero

If is a connected smooth pseudo-Riemannian manifold, then the first three conditions are equivalent, and they imply the fourth condition.

Note that the dimensional restriction is important, since every two-dimensional Riemannian manifold which does not have constant curvature would be a counterexample.

The Schur lemma for the Riemann tensor

The following is an immediate corollary of the Schur lemma for the Ricci tensor.

Let be a connected smooth Riemannian manifold whose dimension is not equal to two. Then the following are equivalent:

The Schur lemma for Codazzi tensors

Let be a smooth Riemannian or pseudo-Riemannian manifold of dimension Let he a smooth symmetric (0,2)-tensor field whose covariant derivative, with respect to the Levi-Civita connection, is completely symmetric. The symmetry condition is an analogue of the Bianchi identity; continuing the analogy, one takes a trace to find that If there is a function on such that for all in then upon substitution one finds Hence implies that is constant on each connected component of As above, one can then state the Schur lemma in this context:

Let be a connected smooth Riemannian manifold whose dimension is not equal to one. Let be a smooth symmetric (0,2)-tensor field whose covariant derivative is totally symmetric as a (0,3)-tensor field. Then the following are equivalent:

If is a connected and smooth pseudo-Riemannian manifold, then the first three are equivalent, and imply the fourth and fifth.

Applications

The Schur lemmas are frequently employed to prove roundness of geometric objects. A noteworthy example is to characterize the limits of convergent geometric flows.

For example, a key part of Richard Hamilton's 1982 breakthrough on the Ricci flow [1] was his "pinching estimate" which, informally stated, says that for a Riemannian metric which appears in a 3-manifold Ricci flow with positive Ricci curvature, the eigenvalues of the Ricci tensor are close to one another relative to the size of their sum. If one normalizes the sum, then, the eigenvalues are close to one another in an absolute sense. In this sense, each of the metrics appearing in a 3-manifold Ricci flow of positive Ricci curvature "approximately" satisfies the conditions of the Schur lemma. The Schur lemma itself is not explicitly applied, but its proof is effectively carried out through Hamilton's calculations.

In the same way, the Schur lemma for the Riemann tensor is employed to study convergence of Ricci flow in higher dimensions. This goes back to Gerhard Huisken's extension of Hamilton's work to higher dimensions, [2] where the main part of the work is that the Weyl tensor and the semi-traceless Riemann tensor become zero in the long-time limit. This extends to the more general Ricci flow convergence theorems, some expositions of which directly use the Schur lemma. [3] This includes the proof of the differentiable sphere theorem.

The Schur lemma for Codazzi tensors is employed directly in Huisken's foundational paper on convergence of mean curvature flow, which was modeled on Hamilton's work. [4] In the final two sentences of Huisken's paper, it is concluded that one has a smooth embedding with where is the second fundamental form and is the mean curvature. The Schur lemma implies that the mean curvature is constant, and the image of this embedding then must be a standard round sphere.

Another application relates full isotropy and curvature. Suppose that is a connected thrice-differentiable Riemannian manifold, and that for each the group of isometries acts transitively on This means that for all and all there is an isometry such that and This implies that also acts transitively on that is, for every there is an isometry such that and Since isometries preserve sectional curvature, this implies that is constant for each The Schur lemma implies that has constant curvature. A particularly notable application of this is that any spacetime which models the cosmological principle must be the warped product of an interval and a constant-curvature Riemannian manifold. See O'Neill (1983, page 341).

Stability

Recent research has investigated the case that the conditions of the Schur lemma are only approximately satisfied.

Consider the Schur lemma in the form "If the traceless Ricci tensor is zero then the scalar curvature is constant." Camillo De Lellis and Peter Topping [5] have shown that if the traceless Ricci tensor is approximately zero then the scalar curvature is approximately constant. Precisely:

Next, consider the Schur lemma in the special form "If is a connected embedded surface in whose traceless second fundamental form is zero, then its mean curvature is constant." Camillo De Lellis and Stefan Müller [6] have shown that if the traceless second fundamental form of a compact surface is approximately zero then the mean curvature is approximately constant. Precisely

As an application, one can conclude that itself is 'close' to a round sphere.

Related Research Articles

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined extrinsically relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space.

<span class="mw-page-title-main">Riemannian manifold</span> Smooth manifold with an inner product on each tangent space

In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

<span class="mw-page-title-main">Ricci flow</span> Partial differential equation

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

In mathematics, the Chern theorem states that the Euler–Poincaré characteristic of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial of its curvature form.

In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations, although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds. Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons.

<span class="mw-page-title-main">Curvature of Riemannian manifolds</span>

In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.

Myers's theorem, also known as the Bonnet–Myers theorem, is a celebrated, fundamental theorem in the mathematical field of Riemannian geometry. It was discovered by Sumner Byron Myers in 1941. It asserts the following:

In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body feels when moving along a geodesic. The Weyl tensor differs from the Riemann curvature tensor in that it does not convey information on how the volume of the body changes, but rather only how the shape of the body is distorted by the tidal force. The Ricci curvature, or trace component of the Riemann tensor contains precisely the information about how volumes change in the presence of tidal forces, so the Weyl tensor is the traceless component of the Riemann tensor. This tensor has the same symmetries as the Riemann tensor, but satisfies the extra condition that it is trace-free: metric contraction on any pair of indices yields zero. It is obtained from the Riemann tensor by subtracting a tensor that is a linear expression in the Ricci tensor.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. This decomposition is of fundamental importance in Riemannian and pseudo-Riemannian geometry.

In the mathematical field of differential geometry, the Kulkarni–Nomizu product is defined for two (0, 2)-tensors and gives as a result a (0, 4)-tensor.

The Yamabe problem refers to a conjecture in the mathematical field of differential geometry, which was resolved in the 1980s. It is a statement about the scalar curvature of Riemannian manifolds:

Let (M,g) be a closed smooth Riemannian manifold. Then there exists a positive and smooth function f on M such that the Riemannian metric fg has constant scalar curvature.

In differential geometry there are a number of second-order, linear, elliptic differential operators bearing the name Laplacian. This article provides an overview of some of them.

In the mathematical field of differential geometry, a Codazzi tensor is a symmetric 2-tensor whose covariant derivative is also symmetric. Such tensors arise naturally in the study of Riemannian manifolds with harmonic curvature or harmonic Weyl tensor. In fact, existence of Codazzi tensors impose strict conditions on the curvature tensor of the manifold. Also, the second fundamental form of an immersed hypersurface in a space form is a Codazzi tensor.

In differential geometry, a complete Riemannian manifold is called a Ricci soliton if, and only if, there exists a smooth vector field such that

References

  1. Hamilton, Richard S. (1982). "Three-manifolds with positive Ricci curvature". Journal of Differential Geometry. 17 (2): 255–306. doi:10.4310/jdg/1214436922.
  2. Huisken, Gerhard (1985). "Ricci deformation of the metric on a Riemannian manifold". J. Differential Geom. 21 (1): 47–62. doi:10.4310/jdg/1214439463.
  3. Böhm, Christoph; Wilking, Burkhard (2008). "Manifolds with positive curvature operators are space forms". Ann. of Math. (2). 167 (3): 1079–1097. doi:10.4007/annals.2008.167.1079.
  4. Huisken, Gerhard (1984). "Flow by mean curvature of convex surfaces into spheres". J. Differential Geom. 20 (1): 237–266. doi:10.4310/jdg/1214438998.
  5. De Lellis, Camillo; Topping, Peter M. (2012). "Almost-Schur lemma". Calc. Var. Partial Differential Equations. 443 (3–44): 347–354.
  6. De Lellis, Camillo; Müller, Stefan (2005). "Optimal rigidity estimates for nearly umbilical surfaces". J. Differential Geom. 69 (1): 75–110.