Stellar age estimation

Last updated
Young star ejecting two jets of energised gas Cosmic Lightsaber in Orion.jpg
Young star ejecting two jets of energised gas

Various methods and tools are involved in stellar age estimation, an attempt to identify within reasonable degrees of confidence what the age of a star is. These methods include stellar evolutionary models, membership in a given star cluster or system, fitting the star with the standard spectral and luminosity classification system, and the presence of a protoplanetary disk, among others. Nearly all of the methods of determining age require knowledge of the mass of the star, which can be known through various methods. No individual method can provide accurate results for all types of stars. [2]

Contents

Luminosity increase and the Hertzsprung–Russell diagram

As star grow older, their luminosity increases at an appreciable rate. [3] Given the mass of the star, one can use this rate of increase in luminosity in order to determine the age of the star. This method only works for calculating stellar age on the main sequence, because in advanced evolutionary stages of the star, such as the red giant stage, the standard relationship for the determination of age no longer holds. However, when one can observe a red giant star with a known mass, one can calculate the main-sequence lifetime, [4] and thus the minimum age of star is known given that it is in an advanced stage of its evolution. As the star spends only about 1% of its total lifetime as a red giant, [5] this is an accurate method of determining age.

Field stars

Eta Carinae, a star system that is violently ejecting gas EtaCarinae.jpg
Eta Carinae, a star system that is violently ejecting gas

Various properties of stars can also be used to determine their age. For example, the Eta Carinae system is emitting large quantities of gas and dust. These enormous outbursts can be used to infer that the star system is nearing the end of its life, and will explode as a supernova within a relatively short period of astronomical time. [6] Very large stars like VY Canis Majoris, one of the largest stars known, together with NML Cygni, VX Sagittarii and Trumpler 27-1 all have radii larger than that of the average orbital radius of Jupiter in the Solar System, thus showing that they are in extremely late evolutionary stages. [7] Betelgeuse in particular is expected to die in a supernova explosion within the next million years. [8]

As well as the scenarios of supermassive stars violently casting off their outer layers before their deaths, other examples can be found of the properties of stars which illustrate their age. For example, Cepheid variables have a characteristic pattern in their lightcurves, the rate of repetition of which is dependent on the luminosity of the star. [9] Since Cepheid variables are a relatively short evolutionary stage in the lifecycle of stars, and knowing the mass of the star allows for the star to be tracked in its evolutionary path, one can estimate the age of the Cepheid variable.

Exceptional stellar properties which allow for an estimation of age are not confined to advanced evolutionary stages. When a roughly solar-mass star exhibits T Tauri variability, astronomers can locate the age of the star as being before the beginning of the main sequence phase of the star's life. [10] Additionally, more massive pre-main-sequence stars could be Herbig Ae/Be stars. [11] If a red dwarf star is emitting immense stellar flares and x-rays, the star can be calculated to be in an early stage of its main-sequence lifetime, after which it will become less variable and become stable. [12]

Membership in a star cluster or system

47 Tucanae, a globular cluster 47tuc salt.jpg
47 Tucanae, a globular cluster

Membership in a star cluster or star system permits an assignment of rough ages to a large number of stars present within. When one can determine the age of stars through other methods, such as the ones listed above, one can identify the age of all of the bodies in a system. [13] This is especially useful in clusters of stars which exhibit a large amount of variety in their stellar masses, evolutionary stages, and classifications. While not entirely independent of the properties of the stars in the cluster, system, or other reasonably-sized association of stars, an astronomer would only need a representative sample of stars to determine the age of the cluster, rather than painstakingly finding the age of every star in the cluster through other properties.

In addition, knowing the age of one member of a star system can help determine the age of that system. In a star system, stars almost always form at the same time as each other, and given the age of one star, the age of all of the others can be known. [14]

However, this method does not work for galaxies. These units are much larger, and are not merely a one-off creation of stars which allows their age to be determined in this fashion. The creation of stars in a galaxy takes place over billions of years, [15] even though star production may long since have ceased (see elliptical galaxy). The oldest stars in a galaxy can only set a minimum age for the galaxy (when star formation began) but by no means determine the actual age. [16]

Presence of a protoplanetary disk

Along with other factors, the presence of a protoplanetary disk sets a maximum limit on the age of stars. Stars with protoplanetary disks are typically young, having moved onto the main sequence only a relatively short time ago. [17] Over time, this disk would coalesce to form planets, with leftover material being deposited into various asteroid belts and other similar locations. However, the presence of pulsar planets complicates this method as a determinant of age.

Gyrochronology

Gyro-chronology is a method used to determine the age of field stars by measuring their rotation rate, and then comparing this rate with the rotation rate of the Sun, which serves as a precalibrated clock for this measurement. [18] This method has been seen as a more accurate method for the determination of stellar ages than other methods for field stars. [18]

See also

Related Research Articles

<span class="mw-page-title-main">Globular cluster</span> Spherical collection of stars

A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies, and though globular clusters were long held to be the more luminous of the two, discoveries of outliers had made the distinction between the two less clear by the early 21st century. Their name is derived from Latin globulus. Globular clusters are occasionally known simply as "globulars".

<span class="mw-page-title-main">Main sequence</span> Continuous band of stars that appears on plots of stellar color versus brightness

In astronomy, the main sequence is a classification of stars which appear on plots of stellar color versus brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or dwarf stars, and positions of stars on and off the band are believed to indicate their physical properties, as well as their progress through several types of star life-cycles. These are the most numerous true stars in the universe and include the Sun. Color-magnitude plots are known as Hertzsprung–Russell diagrams after Ejnar Hertzsprung and Henry Norris Russell.

<span class="mw-page-title-main">Open cluster</span> Large group of stars less bound than globular clusters

An open cluster is a type of star cluster made of tens to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. Each one is loosely bound by mutual gravitational attraction and becomes disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center. This can result in a loss of cluster members through internal close encounters and a dispersion into the main body of the galaxy. Open clusters generally survive for a few hundred million years, with the most massive ones surviving for a few billion years. In contrast, the more massive globular clusters of stars exert a stronger gravitational attraction on their members, and can survive for longer. Open clusters have been found only in spiral and irregular galaxies, in which active star formation is occurring.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Star cluster</span> Group of stars

Star clusters are large groups of stars held together by self-gravitation. Two main types of star clusters can be distinguished. Globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound. Open clusters are more loosely clustered groups of stars, generally containing fewer than a few hundred members, that are often very young. As they move through the galaxy, over time, open clusters become disrupted by the gravitational influence of giant molecular clouds. Even though they are no longer gravitationally bound, they will continue to move in broadly the same direction through space and are then known as stellar associations, sometimes referred to as moving groups.

<span class="mw-page-title-main">Variable star</span> Star whose brightness fluctuates, as seen from Earth

A variable star is a star whose brightness as seen from Earth changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:

<span class="mw-page-title-main">Cepheid variable</span> Type of variable star that pulsates radially

A Cepheid variable is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period and amplitude. Cepheids are important cosmic benchmarks for scaling galactic and extragalactic distances; a strong direct relationship exists between a Cepheid variable's luminosity and its pulsation period.

<span class="mw-page-title-main">T Tauri star</span> Class of young variable stars

T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and identified by their optical variability and strong chromospheric lines. T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence along the Hayashi track, a luminosity–temperature relationship obeyed by infant stars of less than 3 solar masses (M) in the pre-main-sequence phase of stellar evolution. It ends when a star of 0.5 M or larger develops a radiative zone, or when a smaller star commences nuclear fusion on the main sequence.

<span class="mw-page-title-main">Red supergiant</span> Stars with a supergiant luminosity class with a spectral type of K or M

Red supergiants (RSGs) are stars with a supergiant luminosity class and a stellar classification K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.

<span class="mw-page-title-main">Astronomical object</span> Large natural physical entity in space

An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body or celestial body is a single, tightly bound, contiguous entity, while an astronomical or celestial object is a complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

<span class="mw-page-title-main">Spiral galaxy</span> Class of galaxy that has spiral structures extending from their cores.

Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae and, as such, form part of the Hubble sequence. Most spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and a central concentration of stars known as the bulge. These are often surrounded by a much fainter halo of stars, many of which reside in globular clusters.

<span class="mw-page-title-main">RR Lyrae variable</span> Type of variable star

RR Lyrae variables are periodic variable stars, commonly found in globular clusters. They are used as standard candles to measure (extra) galactic distances, assisting with the cosmic distance ladder. This class is named after the prototype and brightest example, RR Lyrae.

<span class="mw-page-title-main">Cosmic distance ladder</span> Succession of methods by which astronomers determine the distances to celestial objects

The cosmic distance ladder is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

<span class="mw-page-title-main">Red-giant branch</span> Portion of the giant branch before helium ignition

The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass stars. Red-giant-branch stars have an inert helium core surrounded by a shell of hydrogen fusing via the CNO cycle. They are K- and M-class stars much larger and more luminous than main-sequence stars of the same temperature.

<span class="mw-page-title-main">Tip of the red-giant branch</span> Primary distance indicator used in astronomy

Tip of the red-giant branch (TRGB) is a primary distance indicator used in astronomy. It uses the luminosity of the brightest red-giant-branch stars in a galaxy as a standard candle to gauge the distance to that galaxy. It has been used in conjunction with observations from the Hubble Space Telescope to determine the relative motions of the Local Cluster of galaxies within the Local Supercluster. Ground-based, 8-meter-class telescopes like the VLT are also able to measure the TRGB distance within reasonable observation times in the local universe.

<span class="mw-page-title-main">Subgiant</span> Type of star larger than main-sequence but smaller than a giant

A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.

<span class="mw-page-title-main">Outline of astronomy</span> Overview of the scientific field of astronomy

The following outline is provided as an overview of and topical guide to astronomy:

<span class="mw-page-title-main">Yellow supergiant</span> Star that has a supergiant luminosity class, with a spectral type of F or G

A yellow supergiant (YSG) is a star, generally of spectral type F or G, having a supergiant luminosity class. They are stars that have evolved away from the main sequence, expanding and becoming more luminous.

<span class="mw-page-title-main">Jeremy Mould</span> Australian astronomer

Jeremy Richard Mould is an Australian astronomer currently at the Centre for Astrophysics and Supercomputing at Swinburne University of Technology. Mould was previously Director of the Research School of Astronomy and Astrophysics at the Australian National University and the American National Optical Astronomy Observatory. He is an Honorary Professorial Fellow, at the University of Melbourne.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

References

  1. "A cosmic lightsabre" . Retrieved 21 December 2015.
  2. Soderblom, David R. (2010). "The Ages of Stars". Annual Review of Astronomy and Astrophysics. 48: 581–629. arXiv: 1003.6074 . Bibcode:2010ARA&A..48..581S. doi:10.1146/annurev-astro-081309-130806. S2CID   119102781.
  3. Brownlee, Donald (29 November 2011). "Worst Days on Planet Earth". The Universe. Season 6. Episode 5. Event occurs at 41:46. History. Retrieved 15 July 2018. The sun gets brighter about 10% every billion years.
  4. "Main Sequence Lifetime". Swinburne Astronomy Online. Swinburne University of Technology . Retrieved 7 March 2012.
  5. "Red giant stars". Swinburne Astronomy Online. Swinburne University of Technology. Retrieved 7 March 2012.
  6. Nemiroff, R.; Bonnell, J., eds. (26 March 2006). "Doomed Star Eta Carinae". Astronomy Picture of the Day . NASA . Retrieved 7 March 2012.
  7. Cain, Fraser. "VY Canis Majoris". Universe Today . Retrieved 7 March 2012.
  8. Ian, O'Neill. "DON'T PANIC: Betelgeuse Won't Explode in 2012". Discovery News. Retrieved 7 March 2012.
  9. Soper, Davidson E. "Cepheid Variable Stars". ASTR 123. Retrieved 7 March 2012.
  10. Cain, Fraser (6 February 2009). "T Tauri Star". Universe Today. Retrieved 7 March 2012.
  11. Herbig Ae/Be stars
  12. Schirber, Michael (9 April 2009). "Can Life Thrive Around a Red Dwarf Star?". Space.com.
  13. Jiminez, Raul (6 January 1998). "Globular cluster ages". Proceedings of the National Academy of Sciences. 95 (1): 13–17. Bibcode:1998PNAS...95...13J. doi: 10.1073/pnas.95.1.13 . PMC   34183 . PMID   9419317.
  14. "Binary Star Systems Versus Planetary System". Astronomy 161 lectures. Retrieved 7 March 2012.
  15. Wethington, Nicholos. "Age of the Milky Way". Universe Today. Retrieved 7 March 2012.
  16. Wethington, Nicholos. "Facts about the Milky Way". Universe Today. Retrieved 7 March 2012.
  17. Mamajek, E.E.; Usuda, Tomonori; Tamura, Motohide; Ishii, Miki (2009). "Initial Conditions of Planet Formation: Lifetimes of Primordial Disks". AIP Conference Proceedings. 1158: 3–10. arXiv: 0906.5011 . Bibcode:2009AIPC.1158....3M. doi:10.1063/1.3215910. S2CID   16660243.
  18. 1 2 "Gyrochronology". Astrobiology Magazine. Archived from the original on 4 November 2010. Retrieved March 18, 2012.