Tieback (geotechnical)

Last updated
Tiebacks to reinforce a slurry wall at Ground Zero, New York FEMA - 6044 - Photograph by Larry Lerner taken on 03-15-2002 in New York.jpg
Tiebacks to reinforce a slurry wall at Ground Zero, New York

A tieback is a structural element installed in soil or rock to transfer applied tensile load into the ground. Typically in the form of a horizontal wire or rod, or a helical anchor, a tieback is commonly used along with other retaining systems (e.g. soldier piles, sheet piles, secant and tangent walls) to provide additional stability to cantilevered retaining walls. [1] With one end of the tieback secured to the wall, the other end is anchored to a stable structure, such as a concrete deadman which has been driven into the ground or anchored into earth with sufficient resistance. The tieback-deadman structure resists forces that would otherwise cause the wall to lean, as for example, when a seawall is pushed seaward by water trapped on the landward side after a heavy rain.

Contents

Tiebacks are drilled into soil using a small diameter shaft, and usually installed at an angle of 15 to 45 degrees. [2] [3] They can be either drilled directly into a soldier pile, or through a wale installed between consecutive piles. Grouted tiebacks can be constructed as steel rods drilled through a concrete wall out into the soil or bedrock on the other side. Grout is then pumped under pressure into the tieback anchor holes to increase soil resistance and thereby prevent tiebacks from pulling out, reducing the risk for wall destabilization.

Helical anchors are screwed into place. Their capacity is proportional to the torque required during installation. This relationship is in accordance with the equation Qt = kT where Qt is the total tensile resistance, k is an empirical constant and T is the installation torque. These anchors are installed either for small loads in short sections or for larger loads and in long continuous lengths.

Design considerations

The main purpose of an anchored wall system is to construct an internally stable mass of soil to resist external failure modes, while maintaining an acceptable level of serviceability. The constructed system should limit movement of the soil and the wall. The magnitude of total anchor force required in the tieback can be determined by analyzing the soil and groundwater properties as well as sources of external loads applied to the system. [4]

The bond length of the tieback must extend beyond the potential critical failure surface of the soil. Otherwise the tieback cannot provide resistance to the collapse of the ground mass enclosed within the failure surface.

Testing

Upon installation, tiebacks are tested and usually pre-loaded. In specific, a combination of proof tests and performance tests are performed on every job. Proof testing involves the application of successively larger loads on the tieback with a loading jack, allowing for the recording of a load-elongation curve according to gauge readings. This simple procedure is used to test each tieback for which a performance test is not conducted. Performance testing is a more reliable method of predicting the load-elongation behavior, and is conducted on a selected number of tiebacks in a project. For performance testing, a particular sequence of increasing and decreasing loads are applied, using equipment similar to those used in the proof test. Typically, the maximum load applied during the test will exceed the design load of the tieback system by approximately 20 to 30%. The creep behavior of the tieback system can also be studied according to the aforementioned procedure. [5]

Related Research Articles

Geotechnical engineering scientific study of earth materials in engineering problems

Geotechnical engineering, also known as geotechnics, is the application of scientific methods and engineering principles to the acquisition, interpretation, and use of knowledge of materials of the Earth's crust and earth materials for the solution of engineering problems and the design of engineering works. It is the applied science of predicting the behavior of the Earth, its various materials and processes towards making the Earth more suitable for human activities and development.

Retaining wall structure designed to restrain soil to unnatural slopes

Retaining walls are relatively rigid walls used for supporting soil laterally so that it can be retained at different levels on the two sides. Retaining walls are structures designed to restrain soil to a slope that it would not naturally keep to. They are used to bound soils between two different elevations often in areas of terrain possessing undesirable slopes or in areas where the landscape needs to be shaped severely and engineered for more specific purposes like hillside farming or roadway overpasses. A retaining wall that retains soil on the backside and water on the frontside is called a seawall or a bulkhead.

Bolted joint type of fastener

Bolted joints are one of the most common elements in construction and machine design. They consist of fasteners that capture and join other parts, and are secured with the mating of screw threads.

In construction or renovation, underpinning is the process of strengthening the foundation of an existing building or other structure. Underpinning may be necessary for a variety of reasons:

A pile driver is a device used to drive piles into soil to provide foundation support for buildings or other structures. The term is also used in reference to members of the construction crew that work with pile-driving rigs.

A geomembrane is very low permeability synthetic membrane liner or barrier used with any geotechnical engineering related material so as to control fluid migration in a human-made project, structure, or system. Geomembranes are made from relatively thin continuous polymeric sheets, but they can also be made from the impregnation of geotextiles with asphalt, elastomer or polymer sprays, or as multilayered bitumen geocomposites. Continuous polymer sheet geomembranes are, by far, the most common.

Anchor bolt Connection elements that transfer loads and shear forces to concrete.

Anchor bolts are used to connect structural and non-structural elements to the concrete. The connection is made by an assembling of different components such as: anchor bolts, steel plates, stiffeners. Anchor bolts transfer different types of load: tension forces and shear forces. A connection between structural elements can be represented by steel column attached to reinforced concrete foundation. Whereas, a common case of non-structural element attached to a structural one is represented by the connection between a facade system and a reinforced concrete wall.

Deep foundation type of building foundation

A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.

Soil nailing construction technique

Soil nailing is a construction remedial measure to treat unstable natural soil slopes or as a construction technique that allows the safe over-steepening of new or existing soil slopes. The technique involves the insertion of relatively slender reinforcing elements into the slope – often general purpose reinforcing bars (rebar) although proprietary solid or hollow-system bars are also available. Solid bars are usually installed into pre-drilled holes and then grouted into place using a separate grout line, whereas hollow bars may be drilled and grouted simultaneously by the use of a sacrificial drill bit and by pumping grout down the hollow bar as drilling progresses. Kinetic methods of firing relatively short bars into soil slopes have also been developed. Bars installed using drilling techniques are usually fully grouted and installed at a slight downward inclination with bars installed at regularly spaced points across the slope face. A rigid facing or isolated soil nail head plates may be used at the surface. Alternatively a flexible reinforcing mesh may be held against the soil face beneath the head plates. Rabbit proof wire mesh and environmental erosion control fabrics and may be used in conjunction with flexible mesh facing where environmental conditions dictate.

Dynamic load testing is a method to assess a pile's bearing capacity by applying a dynamic load to the pile head while recording acceleration and strain on the pile head. Dynamic load testing is a high strain dynamic test which can be applied after pile installation for concrete piles. For steel or timber piles, dynamic load testing can be done during installation or after installation.

Mechanically stabilized earth

Mechanically stabilized earth is soil constructed with artificial reinforcing. It can be used for retaining walls, bridge abutments, seawalls, and dikes. Although the basic principles of MSE have been used throughout history, MSE was developed in its current form in the 1960s. The reinforcing elements used can vary but include steel and geosynthetics.

The Deep Foundations Institute (DFI) is an international membership association of contractor, engineers and suppliers in the field of design and construction of deep foundations and excavations. The organization is classified as a 501(c)(6) non-profit corporation under the United States Internal Revenue Code. DFI was formed in 1976.

Vegetation and slope stability are interrelated by the ability of the plant life growing on slopes to both promote and hinder the stability of the slope. The relationship is a complex combination of the type of soil, the rainfall regime, the plant species present, the slope aspect, and the steepness of the slope. Knowledge of the underlying slope stability as a function of the soil type, its age, horizon development, compaction, and other impacts is a major underlying aspect of understanding how vegetation can alter the stability of the slope. There are four major ways in which vegetation influences slope stability: wind throwing, the removal of water, mass of vegetation (surcharge), and mechanical reinforcement of roots.

Screw piles

Screw piles, sometimes referred to as screw anchors, screw-piles, helical piles, and helical anchors are a steel screw-in piling and ground anchoring system used for building deep foundations. Screw piles are manufactured using varying sizes of tubular hollow sections for the pile or anchors shaft.

This information sets out some of the basic considerations taken into account by the lifting design engineer.

Tensile testing Test procedure to determine mechanical properties of a specimen.

Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing.

Earth anchor

An earth anchor is a device designed to support structures, most commonly used in geotechnical and construction applications. Also known as a ground anchor, percussion driven earth anchor or mechanical anchor, it may be impact driven into the ground or run in spirally, depending on its design and intended force-resistance characteristics.

Offshore geotechnical engineering A sub-field of engineering concerned with human-made structures in the sea

Offshore geotechnical engineering is a sub-field of geotechnical engineering. It is concerned with foundation design, construction, maintenance and decommissioning for human-made structures in the sea. Oil platforms, artificial islands and submarine pipelines are examples of such structures. The seabed has to be able to withstand the weight of these structures and the applied loads. Geohazards must also be taken into account. The need for offshore developments stems from a gradual depletion of hydrocarbon reserves onshore or near the coastlines, as new fields are being developed at greater distances offshore and in deeper water, with a corresponding adaptation of the offshore site investigations. Today, there are more than 7,000 offshore platforms operating at a water depth up to and exceeding 2000 m. A typical field development extends over tens of square kilometers, and may comprise several fixed structures, infield flowlines with an export pipeline either to the shoreline or connected to a regional trunkline.

This page is a glossary of Prestressed concrete terms.

Offshore embedded anchors Type of anchor

Offshore embedded anchors are anchors that derive their holding capacity from the frictional, or bearing, resistance of the surrounding soil, as opposed to gravity anchors, which derive their holding capacity largely from their weight. As offshore developments move into deeper waters, gravity-based structures become less economical due to the large size needed and the consequent cost of transportation.

References

  1. https://www.berkelandcompany.com/sheeting-and-shoring/tie-backs
  2. https://www.fhwa.dot.gov/engineering/geotech/pubs/if99015.pdf
  3. https://www.berkelandcompany.com/sheeting-and-shoring/tie-backs
  4. https://www.fhwa.dot.gov/engineering/geotech/pubs/if99015.pdf
  5. Schnabel, Harry (1982). "Tiebacks in foundation engineering and construction".