Betaine—homocysteine S-methyltransferase

Last updated
betaine-homocysteine S-methyltransferase
BHMT ribbon view.png
Crystal structure of rat liver betaine homocysteine s-methyltransferase. [1]
Identifiers
EC no. 2.1.1.5
CAS no. 9029-78-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In the field of enzymology, a betaine-homocysteine S-methyltransferase also known as betaine-homocysteine methyltransferase (BHMT) is a zinc metallo-enzyme that catalyzes the transfer of a methyl group from trimethylglycine and a hydrogen ion from homocysteine to produce dimethylglycine and methionine respectively: [2]

Contents

Diagram of the action of BHMT Betaine--homocysteine S-methyltransferase.png
Diagram of the action of BHMT

This enzyme belongs to the family of transferases, specifically those transferring one-carbon group methyltransferases. This enzyme participates in the metabolism of glycine, serine, threonine and also methionine.

Isozymes

In humans, there are two isozymes, BHMT [3] [4] and BHMT2, [5] [6] each encoded by a separate gene.

betaine-homocysteine methyltransferase
4m3p.jpg
Betaine--homocysteine S-methyltransferase 1 homotetramer, Human
Identifiers
SymbolBHMT
NCBI gene 635
HGNC 1047
OMIM 602888
RefSeq NM_001713
UniProt Q93088
Other data
EC number 2.1.1.5
Locus Chr. 5 q13.1-q15
Search for
Structures Swiss-model
Domains InterPro
betaine-homocysteine methyltransferase 2
Identifiers
SymbolBHMT2
NCBI gene 23743
HGNC 1048
OMIM 605932
RefSeq NM_017614
UniProt Q9H2M3
Other data
EC number 2.1.1.5
Locus Chr. 5 q13
Search for
Structures Swiss-model
Domains InterPro

Tissue distribution

BHMT is expressed most predominantly in the liver and kidney. [7]

Clinical significance

Mutations in the BHMT gene are known to exist in humans. Anomalies may influence the metabolism of homocysteine , which is implicated in disorders ranging from vascular disease, autism, and schizophrenia to neural tube birth defects such as spina bifida.

See also

Related Research Articles

<span class="mw-page-title-main">Methionine</span> Sulfur-containing amino acid

Methionine is an essential amino acid in humans.

<span class="mw-page-title-main">Choline</span> Chemical compound and essential nutrient

Choline is a cation with the chemical formula [(CH3)3NCH2CH2OH]+. Choline forms various salts, for example choline chloride and choline bitartrate.

<span class="mw-page-title-main">Sarcosine</span> Chemical compound

Sarcosine, also known as N-methylglycine, or monomethylglycine, is a amino acid with the formula CH3N(H)CH2CO2H. It exists at neutral pH as the zwitterion CH3N+(H)2CH2CO2, which can be obtained as a white, water-soluble powder. Like some amino acids, sarcosine converts to a cation at low pH and an anion at high pH, with the respective formulas CH3N+(H)2CH2CO2H and CH3N(H)CH2CO2. Sarcosine is a close relative of glycine, with a secondary amine in place of the primary amine.

<span class="mw-page-title-main">Trimethylglycine</span> Chemical compound

Trimethylglycine is an amino acid derivative that occurs in plants. Trimethylglycine was the first betaine discovered; originally it was simply called betaine because, in the 19th century, it was discovered in sugar beets.

A betaine in chemistry is any neutral chemical compound with a positively charged cationic functional group that bears no hydrogen atom, such as a quaternary ammonium or phosphonium cation, and with a negatively charged functional group, such as a carboxylate group that may not be adjacent to the cationic site. Historically, the term was reserved for trimethylglycine (TMG), which is involved in methylation reactions and detoxification of homocysteine. This is a modified amino acid consisting of glycine with three methyl groups serving as methyl donor for various metabolic pathways.

<span class="mw-page-title-main">Methionine synthase</span> Mammalian protein found in Homo sapiens

Methionine synthase also known as MS, MeSe, MTR is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.

<span class="mw-page-title-main">Hypermethioninemia</span> Medical condition

Hypermethioninemia is an excess of the amino acid methionine, in the blood. This condition can occur when methionine is not broken down properly in the body.

In enzymology, sarcosine dehydrogenase (EC 1.5.8.3) is a mitochondrial enzyme that catalyzes the chemical reaction N-demethylation of sarcosine to give glycine. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donor with other acceptors. The systematic name of this enzyme class is sarcosine:acceptor oxidoreductase (demethylating). Other names in common use include sarcosine N-demethylase, monomethylglycine dehydrogenase, and sarcosine:(acceptor) oxidoreductase (demethylating). Sarcosine dehydrogenase is closely related to dimethylglycine dehydrogenase, which catalyzes the demethylation reaction of dimethylglycine to sarcosine. Both sarcosine dehydrogenase and dimethylglycine dehydrogenase use FAD as a cofactor. Sarcosine dehydrogenase is linked by electron-transferring flavoprotein (ETF) to the respiratory redox chain. The general chemical reaction catalyzed by sarcosine dehydrogenase is:

Amine <i>N</i>-methyltransferase Class of enzymes

Amine N-methyltransferase, also called indolethylamine N-methyltransferase, and thioether S-methyltransferase, is an enzyme that is ubiquitously present in non-neural tissues and catalyzes the N-methylation of tryptamine and structurally related compounds. More recently, it was discovered that this enzyme can also catalyze the methylation of thioether and selenoether compounds, although the physiological significance of this biotransformation is not yet known.

<span class="mw-page-title-main">Guanidinoacetate N-methyltransferase</span> Mammalian protein found in Homo sapiens

Guanidinoacetate N-methyltransferase is an enzyme that catalyzes the chemical reaction and is encoded by gene GAMT located on chromosome 19p13.3.

In enzymology, a (iso)eugenol O-methyltransferase is an enzyme that catalyzes the chemical reaction

mRNA (guanine-N7-)-methyltransferase Enzyme

In enzymology, a mRNA (guanine-N7-)-methyltransferase also known as mRNA cap guanine-N7 methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a sterol 24-C-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">MTRR (gene)</span> Protein-coding gene in the species Homo sapiens

Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.

<span class="mw-page-title-main">PCMT1</span> Protein-coding gene in the species Homo sapiens

Protein-L-isoaspartate(D-aspartate) O-methyltransferase is an enzyme that in humans is encoded by the PCMT1 gene.

<span class="mw-page-title-main">NNMT</span> Protein-coding gene in humans

Nicotinamide N-methyltransferase (NNMT) is an enzyme that in humans is encoded by the NNMT gene. NNMT catalyzes the methylation of nicotinamide and similar compounds using the methyl donor S-adenosyl methionine (SAM-e) to produce S-adenosyl-L-homocysteine (SAH) and 1-methylnicotinamide.

Glycine/sarcosine N-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:glycine(or sarcosine) N-methyltransferase . This enzyme catalyses the following chemical reaction

Sarcosine/dimethylglycine N-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:sarcosine(or N,N-dimethylglycine) N-methyltransferase . This enzyme catalyses the following chemical reaction

Dimethylglycine N-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:N,N-dimethylglycine N-methyltransferase (betaine-forming). This enzyme catalyses the following chemical reaction

Glycine/sarcosine/dimethylglycine N-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:glycine(or sarcosine or N,N-dimethylglycine) N-methyltransferase . This enzyme catalyses the following chemical reaction

References

  1. PDB: 1UMY ; González B, Pajares MA, Martínez-Ripoll M, Blundell TL, Sanz-Aparicio J (May 2004). "Crystal structure of rat liver betaine homocysteine s-methyltransferase reveals new oligomerization features and conformational changes upon substrate binding". J. Mol. Biol. 338 (4): 771–82. CiteSeerX   10.1.1.320.5080 . doi:10.1016/j.jmb.2004.03.005. PMID   15099744.
  2. Pajares MA, Pérez-Sala D (December 2006). "Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism?". Cell. Mol. Life Sci. 63 (23): 2792–803. doi:10.1007/s00018-006-6249-6. hdl: 10261/13799 . PMID   17086380. S2CID   6076708.
  3. Garrow TA (September 1996). "Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase". J. Biol. Chem. 271 (37): 22831–8. doi: 10.1074/jbc.271.37.22831 . PMID   8798461.
  4. Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA (September 1997). "Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene". Arch. Biochem. Biophys. 345 (1): 171–4. doi:10.1006/abbi.1997.0246. PMID   9281325.
  5. Chadwick LH, McCandless SE, Silverman GL, Schwartz S, Westaway D, Nadeau JH (November 2000). "Betaine-homocysteine methyltransferase-2: cDNA cloning, gene sequence, physical mapping, and expression of the human and mouse genes". Genomics. 70 (1): 66–73. doi:10.1006/geno.2000.6319. PMID   11087663.
  6. Szegedi SS, Castro CC, Koutmos M, Garrow TA (April 2008). "Betaine-homocysteine S-methyltransferase-2 is an S-methylmethionine-homocysteine methyltransferase". J. Biol. Chem. 283 (14): 8939–45. doi: 10.1074/jbc.M710449200 . PMC   2276374 . PMID   18230605.
  7. Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA (September 1997). "Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene". Arch. Biochem. Biophys. 345 (1): 171–4. doi:10.1006/abbi.1997.0246. PMID   9281325.

Further reading