Bruce Beutler

Last updated • 19 min readFrom Wikipedia, The Free Encyclopedia

Bruce Beutler
Bruce Beutler.jpg
University of Texas Southwestern Medical Center, 2021
Photograph by Brian Coats
Born (1957-12-29) December 29, 1957 (age 66)
Nationality American
Alma mater University of Chicago, University of California, San Diego
Spouse(s)Barbara Lanzl (c. 1980-1988; divorced; 3 children)
Awards2011 Nobel Prize in Physiology or Medicine
Scientific career
Fields Immunology
Institutions University of Texas Southwestern Medical Center

Bruce Alan Beutler ( /ˈbɔɪtlər/ BOYT-lər; born December 29, 1957) is an American immunologist and geneticist. Together with Jules A. Hoffmann, he received one-half of the 2011 Nobel Prize in Physiology or Medicine, for "discoveries concerning the activation of innate immunity." [1] Beutler discovered the long-elusive receptor for lipopolysaccharide (LPS; also known as endotoxin). He did so by identifying spontaneous mutations in the gene coding for mouse Toll-like receptor 4 (Tlr4) in two unrelated strains of LPS-refractory mice and proving they were responsible for that phenotype. [2] Subsequently, and chiefly through the work of Shizuo Akira, other TLRs were shown to detect signature molecules of most infectious microbes, in each case triggering an innate immune response. [3] [4] [5] [6] [7]

Contents

The other half of the Nobel Prize went to Ralph M. Steinman for "his discovery of the dendritic cell and its role in adaptive immunity." [1]

Beutler is currently a Regental Professor and Director of the Center for the Genetics of Host Defense at the University of Texas Southwestern Medical Center in Dallas, Texas. [8] [9]

Early life and education

Born in Chicago, Illinois, to a Jewish [10] family, Beutler lived in Southern California between the ages of 2 and 18 (1959 to 1977). For most of this time, he lived in city of Arcadia, a northeastern suburb of Los Angeles in the San Gabriel Valley. During these years, he spent much time hiking in the San Gabriel Mountains, and in regional national parks (Sequoia, Yosemite, Joshua Tree, and Grand Canyon), and was particularly fascinated by living things. [11] These experiences impelled an intense interest in biological science. His introduction to experimental biology, acquired between the ages of 14 and 18, included work in the laboratory of his father, Ernest Beutler, then at the City of Hope Medical Center in Duarte, CA. There he learned to assay enzymes of red blood cells and became familiar with methods for protein isolation. He published his studies of an electrophoretic variant of glutathione peroxidase, [12] as well as the inherent catalytic activity of inorganic selenite, [13] at the age of 17.

Beutler also worked in the City of Hope laboratory of Susumu Ohno, a geneticist known for his studies of evolution, genome structure, and sex differentiation in mammals. Ohno hypothesized that the major histocompatibility complex proteins served as anchorage sites for organogenesis-directing proteins. [14] He further suggested that H-Y antigen, a minor histocompatibility protein encoded by a gene on the Y chromosome and absent in female mammals, was responsible for directing organogenesis of the indifferent gonad to form a testis. In studying H-Y antigen, [15] Beutler became conversant with immunology and mouse genetics during the 1970s. While a college student at the University of California at San Diego, Beutler worked in the laboratory of Dan Lindsley, a Drosophila geneticist interested in spermatogenesis and spermiogenesis in the fruit fly. There, he learned to map phenotypes to chromosomal regions using visible phenotypic markers. [11] He also worked in the laboratory of Abraham Braude, an expert in the biology of LPS.

Beutler received his secondary school education at Polytechnic School in Pasadena, California. A precocious student, he graduated from high school at the age of 16, enrolled in college at the University of California, San Diego, and graduated with a BA degree at the age of 18 in 1976. He then enrolled in medical school at the University of Chicago in 1977 and received his M.D. degree in 1981 at the age of 23. [16] From 1981 to 1983 Beutler continued his medical training at the University of Texas Southwestern Medical Center in Dallas, Texas, as an intern in the Department of Internal Medicine, and as a resident in the Department of Neurology. However, he found clinical medicine less interesting than laboratory science, and decided to return to the laboratory.

Scientific contributions

Isolation of tumor necrosis factor and discovery of its inflammation-promoting effect

Beutler’s focus on innate immunity began when he was a postdoctoral associate and later an assistant professor in the lab of Anthony Cerami at Rockefeller University (1983-1986). Drawing upon skills he had acquired earlier, he isolated mouse “cachectin” from the conditioned medium of LPS-activated mouse macrophages. [17] Cachectin was hypothesized by Cerami to be a mediator of wasting in chronic disease. Its biological activity, the suppression of lipoprotein lipase synthesis in adipocytes, was thought to contribute to wasting, since lipoprotein lipase cleaves fatty acids from circulating triglycerides, allowing their uptake and re-esterification within fat cells. [18] By sequential fractionation of LPS-activated macrophage medium, measuring cachectin activity at each step, Beutler purified cachectin to homogeneity. [19]  Determining its N-terminal sequence, he recognized it as mouse tumor necrosis factor (TNF), and showed that it had strong TNF activity; moreover that human TNF, isolated by a very different assay, had strong cachectin activity. [18]

Human TNF, isolated contemporaneously by other workers, [20] had to that time been defined only by its ability to kill cancer cells. The discovery of a separate role for TNF as a catabolic switch was of considerable interest. Of still greater importance, Beutler demonstrated that TNF acted as a key mediator of  endotoxin-induced shock. [21] This he accomplished by raising an antibody against mouse TNF, which he used to neutralize TNF in living mice challenged with lipopolysaccharide (LPS). [21] The often-lethal systemic inflammatory response to LPS was significantly mitigated by passive immunization against TNF. The discovery that TNF caused an acute systemic inflammatory disease (LPS-induced shock) presaged its causative role in numerous chronic inflammatory diseases. With J.-M. Dayer, Beutler demonstrated that purified TNF could cause inflammation-associated responses in cultured human synoviocytes: secretion of collagenase and prostaglandin E2. [22]   This was an early hint that TNF might be causally important in rheumatoid arthritis (as later shown by Feldmann, Brennan, and Maini [23] ). Beutler also demonstrated the existence of TNF receptors on most cell types, [19] and correctly inferred the presence of two types of TNF receptor distinguished by their affinities, later cloned and designated p55 and p75 TNF receptors to denote their approximate molecular weights. [24] [25] [26] [27] [28] Before a sensitive immunoassay for TNF was feasible, Beutler used these receptors in a binding competition assay using radio-iodinated TNF as a tracer, which allowed him to precisely measure TNF in biological fluids. [29]

Invention of TNF inhibitors

Beutler was recruited to a faculty position at UT Southwestern Medical Center and the Howard Hughes Medical Institute in 1986. Aware that TNF blockade might have clinical applications, he (along with a graduate student, David Crawford, and a postdoctoral associate, Karsten Peppel) invented and patented recombinant molecules expressly designed to neutralize TNF in vivo (Patent No. US5447851B1). [30] Fusing the binding portion of TNF receptor proteins to the heavy chain of an immunoglobulin molecule to force receptor dimerization, [30] they produced chimeric reagents with surprisingly high affinity and specificity for both TNF and a closely related cytokine called lymphotoxin, low antigenicity, and excellent stability in vivo. The human p75 receptor chimeric protein was later used extensively as the drug Etanercept in the treatment of rheumatoid arthritis, Crohn's disease, psoriasis, and other forms of inflammation. Marketed by Amgen, Etanercept achieved more than $74B in sales. [31]

Discovery of the LPS receptor, and the role of TLRs in innate immune sensing

From the mid-1980s onward Beutler was interested in the mechanism by which LPS activates mammalian immune cells (chiefly macrophages, [18] [21] but dendritic cells and B cells as well), sometimes leading to uncontrollable Gram negative septic shock, [32] [33] [34] but also promoting the well-known adjuvant effect of LPS, [35] and B cell mitogenesis [36] [37] and antibody production. A single, highly specific LPS receptor was presumed to exist as early as the 1960s, based on the fact that allelic mutations in two separate strains of mice, affecting a discrete genetic locus on chromosome 4 termed Lps, abolished LPS sensing. [36] [38]  Although this receptor had been widely pursued, it remained elusive. Beutler reasoned that in finding the LPS receptor, insight might be gained into the first molecular events that transpire upon an encounter between the host and microbial invaders. [39]

Utilizing positional cloning in an effort that began in 1993 and lasted five years, Beutler, together with several postdoctoral associates including Alexander Poltorak, measured TNF production as a qualitative phenotypic endpoint of the LPS response. Analyzing more than 2,000 meioses, they confined the LPS receptor-encoding gene to a region of the genome encompassing approximately 5.8 million base pairs of DNA. [2] Sequencing most of the interval, they identified a gene within which each of two LPS-refractory strains of mice (C3H/HeJ and C57BL/10ScCr) had deleterious mutations. The gene, Tlr4, encoded a cell surface protein with cytoplasmic domain homology to the interleukin-1 receptor, and several other homologous genes that were scattered across the mouse genome. Beutler and his team thus proved that one of the mammalian Toll-like receptors, TLR4, acts as the membrane-spanning component of the mammalian LPS receptor complex. [2] [40] [41] They also showed that while mouse TLR4 is activated by a tetra-acylated LPS-like molecule (lipid IVa), human TLR4 is not, recapitulating the species specificity for LPS partial structures. [41]  It was deduced that direct contact between TLR4 and LPS is a prerequisite for cell activation. [41]   Later, an extracellular component of the LPS receptor complex, MD-2 (also known as lymphocyte antigen 96), was identified by R. Shimazu and colleagues. [42]  The structure of the complex, with and without LPS bound, was solved by Jie-Oh Lee and colleagues in 2009. [43]

Jules Hoffmann and colleagues had earlier shown that the Drosophila Toll protein, originally known for its role in embryogenesis, was essential for the antimicrobial peptide response to fungal infection. [44]   However, no molecule derived from fungi actually became bound to Toll; rather, a proteolytic cascade led to the activation of an endogenous ligand, the protein Spätzle. This activated NF-kB within cells of the fat body, leading to antimicrobial peptide secretion.

Aware of this work, Charles Janeway and Ruslan Medzhitov overexpressed a modified version of human TLR4 (which they called ‘h-Toll’) and found it capable of activating the transcription factor NF-κB in mammalian cells. [45] They speculated that TLR4 was a “pattern recognition receptor.”  However, they provided no evidence that TLR4 recognized any molecule of microbial origin. If a ligand did exist, it might have been endogenous (as in the fruit fly, where Toll recognizes the endogenous protein Spätzle, or as in the case of the IL-1 receptor, which recognizes the endogenous cytokine IL-1). Indeed, numerous cell surface receptors, including the TGFβ receptor, B cell receptor, and T cell receptor activate NF-κB. In short, it was not clear what TLR4 recognized, nor what its function was. Separate publications, also based on transfection/overexpression studies, held that TLR2 rather than TLR4 was the LPS receptor. [46] [47]

The genetic evidence of Beutler and coworkers correctly identified TLR4 as the specific and non-redundant cell surface receptor for LPS, fully required for virtually all LPS activities. This suggested that other TLRs (of which ten are now known to exist in humans) might also act as sensors of infection in mammals, [48] each detecting other signature molecules made by microbes whether or not they were pathogens in the classical sense of the term. The other TLRs, like TLR4, do indeed initiate innate immune responses. By promoting inflammatory signaling, TLRs can also mediate pathologic effects including fever, systemic inflammation, and shock. Sterile inflammatory and autoimmune diseases such as systemic lupus erythematosus also elicit TLR signaling, and disruption of signaling from the nucleic acid sensing TLRs can favorably modify the disease phenotype. [49] [50] [51] [52] [53] [54] [55] [56]

Random Germline Mutagenesis/Forward Genetics in the mouse

After completing the positional cloning of the Lps locus in 1998, Beutler continued to apply a forward genetic approach to the analysis of immunity in mammals. In this process, germline mutations that alter immune function are created in mice through a random process using the alkylating agent ENU, detected by their phenotypic effects, and then isolated by positional cloning. [57] This work disclosed numerous essential signaling molecules required for the innate immune response, [58] [59] [60] [61] [62] [63] [64] and helped to delineate the biochemistry of innate immunity. Among the genes detected was Ticam1, implicated by an ENU-induced phenotype called Lps2. [58]  The encoded protein TICAM1, also known as TRIF, was a new adaptor molecule, binding to the cytoplasmic domains of both TLR3 and TLR4, and needed for signaling by each.

Another phenotype, called 3d to connote a “triple defect” in TLR signaling, affected a gene of unknown function called Unc93b1. [60] TLRs 3, 7, and 9 (nucleic acid sensing TLRs) failed to signal in homozygotes for the mutation. These TLRs were found to be endosomal, and physically interact with the UNC93B1 protein which transports them to the endosomal compartment. [65]   Humans with mutations in UNC93B1, the human ortholog of the same gene, were subsequently found to be susceptible to recurrent Herpes simplex virus (HSV) encephalitis, in which reactivation of latent virus occurs repeatedly in the trigeminal ganglion at the base of the midbrain, leading to cortical neuron death. [66]

Yet another protein needed to make the endosomal environment suitable for TLR signaling was SLC15A4, identified based on the phenotype feeble. [67]  feeble was identified in a screen in which immunostimulatory DNA was administered to mice intravenously with measurement of the systemic type I interferon response. Failure of this response, which is dependent on TLR9 signaling from plasmacytoid dendritic cells (pDC) was observed in homozygous mutants, and subsequently, failure of TLR7 (but not TLR3) signaling was observed as well. Because the feeble mutation suppressed SLE in mice, [52] the SLC15A4 protein has become a target of interest for drug development. [68]

In all, Beutler and colleagues detected 77 mutations in 36 genes in which ENU-induced mutations created defects of TLR signaling, detected due to faulty TNF and/or interferon responses. These genes encoded all TLRs kept under surveillance in screening, all of the four adapter proteins that signal from TLRs, kinases and other signaling proteins downstream, chaperones needed to escort TLRs to their destinations, proteins that promote the availability of TLR ligands, proteins involved in vesicle transport, and proteins involved in transcriptional responses to TLR signaling, or the post-translational processing of TNF and/or type I interferons (the proteins assayed in screening).

Beutler and colleagues also used ENU mutagenesis to study the global response to a defined infectious agent. They measured susceptibility to mouse cytomegalovirus (MCMV) and identified numerous genes that make a life-or-death difference during infection, terming this set of genes the MCMV "resistome". [69] [70] These genes were grouped into "sensing," "signaling," "effector," "homeostatic," and "developmental" categories, some of which were wholly unexpected. In the homeostatic category, for example, Kir6.1 ATP-sensitive potassium channels in the smooth muscle of the coronary arteries serve an essential role in the maintenance of blood flow during MCMV infection, and mutations that damage these channels cause sudden death during infection. [71]

Other genetic screens in the Beutler laboratory were used to identify genes that mediate homeostatic adaptations of the intestinal epithelium following a cytotoxic insult; [72] [73] [74] [75] [76] [77] [78] prevent allergic responses, [79] diabetes, [80] [81] or obesity; [82] [83] [84] support normal hematopoiesis; [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] and enable humoral and cellular immunity. [95] [96] [97] [98] Some of these (beginning ~2015) were identified by a new process called automated meiotic mapping, which enabled greatly accelerated mutation identification compared to traditional genetic mapping (see below). In the course of their work, Beutler and his colleagues also discovered genes required for biological processes such as normal iron absorption, [99] hearing, [100] pigmentation, [101] [102] metabolism, [82] [84] [103] [104] [105] and embryonic development. [106] Many human diseases were ultimately linked to variants in the corresponding human genes after initial identification in the mouse by the Beutler laboratory, [66] [107] [108] [109] or by the laboratories of collaborating investigators. [110] [111] [112]

Invention of Automated Meiotic Mapping

Prior to 2013, despite the development of methods for massively parallel sequencing and their application in finding induced germline mutations, [113] [114] [115] positional cloning remained a slow process, limited by the need to genetically map mutations to chromosomal intervals to ascertain which induced mutation (among the average of approximately 60 changes in coding and splicing function induced per pedigree) was responsible for an observed phenotype. This required expansion of a mutant stock, outcrossing to a mapping strain, backcrossing, and genotypic and phenotypic analysis of F2 offspring. Moreover, when phenotypic screening was performed prior to positional cloning, only large effect size mutations (producing essentially qualitative phenotypes) were recoverable.

Beutler invented a means of instantly identifying ENU-induced mutations that cause phenotypes. [116] The process, called automated meiotic mapping (AMM), eliminates the need to breed mutant mice to a mapping strain as required in classical genetic mapping and flags causative mutations as soon as phenotypic assay data are collected. In a laboratory setting, it accelerates positional cloning approximately 200-fold, and permits ongoing measurement of genome saturation as mutagenesis progresses. [117]  Not only qualitative phenotypes, but subtle quantitative phenotypes, are detectable and mapped to individual mutations; hence the sensitivity of forward genetics is dramatically increased. AMM depends on statistical computation to detect associations between mutations in either the homozygous or heterozygous state and deviant phenotypes. [116] In addition, machine learning software, trained on the outcome of many thousands of experiments in which putative causative mutations were re-created and re-assayed for phenotype, is used to assess data quality. [118] As of 2022, more than 260,000 ENU-induced non-synonymous coding or splice site mutations had been assayed for phenotypic effects, and more than 5,800 mutations in approximately 2,500 genes had been declared causative of phenotype(s). For certain screens, such as flow cytometry performed on the blood of germline mutant mice, more than 55% saturation of the genome has been achieved (i.e., more than 55% of all genes in which mutations will create flow cytometric aberrations in the peripheral blood have been detected, most of them based on assessment of multiple alleles, as of July 2021). [118]

AMM led to the discovery of many new immunodeficiency disorders, [88] [89] [90] [91] [92] [93] [94] [85] [98] and disorders of bone morphology or mineral density, [111] [112] vision, [119] and metabolism. [82] [84] [104] [105] Of note, AMM was used in the identification of a chemosensor that mediates innate fear behavior in mice and an autism gene found first in mice and then shown to cause autism in humans. [110] [120]  AMM has also permitted high speed searches for mutations that suppress or augment disease phenotypes; for example, the development of autoimmune (Type 1) diabetes in mice of the NOD strain. [80] [81]  It offers a rational way to investigate the pathogenesis of complex disease phenotypes in general, in which many loci invariably contribute to susceptibility or resistance to disease, and disease occurs in those individuals with an unfavorable imbalance between these opposing influences.

Developing drugs that activate TLRs

Beutler has collaborated with Dale L. Boger and his research group to identify synthetic small molecule agonists of mammalian TLRs, which may be used in combination with defined molecular antigens to precisely target and coordinate innate and adaptive immune responses. Neoseptins, small molecules with no relationship to the structure of LPS, were shown to bind to the TLR4-MD2 complex in such a manner that two drug molecules trigger a conformational change similar to that elicited by an authentic LPS molecule. Diprovocims, which bear no structural similarity to bacterial lipopeptides, activate the TLR1-TLR2 heterodimer complex that normally acts as a receptor for tri-acylated lipopeptide molecules. These studies demonstrated that TLR2 and TLR4 can indeed respond to molecules other than classical microbial ligands, and set a new standard for verifying such interactions, in that X-ray crystallography was used to demonstrate the binding of neoseptins and diprovocims to their respective TLR targets at atomic level resolution. Beutler and colleagues also showed, again using X-ray crystallography combined with biological assays, that endogenous sulfatides are capable of binding to the TLR4-MD2 complex, causing its activation. [121] [122] [123] [124] [125] [126] [127]

Awards and recognition

Jules A. Hoffmann, Goran K. Hansson (chairman of the Nobel Committee for Physiology or Medicine) and Beutler Nobel Prize 2011-Press Conference KI-DSC 7609.jpg
Jules A. Hoffmann, Göran K. Hansson (chairman of the Nobel Committee for Physiology or Medicine) and Beutler
Jules A. Hoffmann (background) and Beutler Nobel Prize 2011-Press Conference KI-DSC 7568.jpg
Jules A. Hoffmann (background) and Beutler
Bruce Beutler at the Nobel Prize press conference at Karolinska, Solna Nobel Prize 2011-Press Conference KI-DSC 7512.jpg
Bruce Beutler at the Nobel Prize press conference at Karolinska, Solna

Awards

Honorary Doctoral Degrees

Family

Bruce Beutler was the third son of Ernest Beutler (1928-2008) and Brondelle May Beutler (née Fleisher; 1928-2019). His siblings included two older brothers (Steven [b. 1952] and Earl [b. 1954]), and a younger sister, Deborah [b. 1962]). [133]

Ernest Beutler was a hematologist and medical geneticist famed for his studies of G-6-PD deficiency, [134] other hemolytic anemias, [135] [136] iron metabolism, [137] glycolipid storage diseases, [138] and leukemias, [139] [140] as well as his discovery of X chromosome inactivation. [141]  He was a Professor and department chairman at The Scripps Research Institute contemporaneously with Bruce. The two collaborated productively on several topics prior to Ernest Beutler’s death in 2008. [12] [13] [142] [143] [144] [145]

Both of Ernest Beutler’s parents were physicians. [146] Bruce Beutler’s paternal grandmother, Kathe Beutler (née Italiener, daughter of Anna Rothstein, 1896-1999), [147] was a pediatrician, trained at the Charité hospital in Berlin, earning her medical diploma in 1923. Käthe Italiener married Alfred Beutler in 1925. Also a physician, Alfred Beutler was a cousin to the spectral physicist, Hans G. Beutler (1896-1942), who worked at the Kaiser Wilhelm Institute and the University of Berlin before emigrating to the USA in 1936. He continued his work at the University of Chicago until his death. [148]

Bruce Beutler married Barbara Beutler (née Lanzl) in 1980 and divorced in 1988. Three sons were born to the couple. [149] [150] [11]

See also

Related Research Articles

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is a cytokine and member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain. It is the first cytokine to be described as an adipokine as secreted by adipose tissue.

<span class="mw-page-title-main">Lipopolysaccharide</span> Class of molecules found in the outer membrane of Gram-negative bacteria

Lipopolysaccharide, now more commonly known as Endotoxin, is a collective term for components of the outermost membrane of cell envelope of Gram-negative bacteria, such as E. coli and Salmonella. with a common structural architecture. Lipopolysaccharides (LPS) are large molecules consisting of 3 parts: an outer core polysaccharide termed the O-antigen, an inner core oligosaccharide and Lipid A, all covalently linked. In current terminology, the term endotoxin is often used synonymously with LPS, although there are a few endotoxins that are not related to LPS, such as the so-called delta endotoxin proteins produced by Bacillus thuringiensis.

<span class="mw-page-title-main">Toll-like receptor</span> Class of immune system proteins

Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-spanning receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have reached physical barriers such as the skin or intestinal tract mucosa, they are recognized by TLRs, which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13. Humans lack genes for TLR11, TLR12 and TLR13 and mice lack a functional gene for TLR10. The receptors TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the cell membrane, whereas TLR3, TLR7, TLR8, and TLR9 are located in intracellular vesicles.

<span class="mw-page-title-main">Lipid A</span>

Lipid A is a lipid component of an endotoxin held responsible for the toxicity of gram-negative bacteria. It is the innermost of the three regions of the lipopolysaccharide (LPS), also called endotoxin molecule, and its hydrophobic nature allows it to anchor the LPS to the outer membrane. While its toxic effects can be damaging, the sensing of lipid A by the immune system may also be critical for the onset of immune responses to gram-negative infection, and for the subsequent successful fight against the infection.

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed mainly by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils, as well as by epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

<span class="mw-page-title-main">Toll-like receptor 3</span> Protein found in humans

Toll-like receptor 3 (TLR3) also known as CD283 is a protein that in humans is encoded by the TLR3 gene. TLR3 is a member of the toll-like receptor family of pattern recognition receptors of the innate immune system. TLR3 recognizes double-stranded RNA in endosomes, which is a common feature of viral genomes internalised by macrophages and dendritic cells.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in humans

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

<span class="mw-page-title-main">IRAK4</span> Protein-coding gene in humans

IRAK-4, in the IRAK family, is a protein kinase involved in signaling innate immune responses from Toll-like receptors. It also supports signaling from T-cell receptors. IRAK4 contains domain structures which are similar to those of IRAK1, IRAK2, IRAKM and Pelle. IRAK4 is unique compared to IRAK1, IRAK2 and IRAKM in that it functions upstream of the other IRAKs, but is more similar to Pelle in this trait. IRAK4 has important clinical applications.

<span class="mw-page-title-main">MYD88</span> Protein found in humans

Myeloid differentiation primary response 88 (MYD88) is a protein that, in humans, is encoded by the MYD88 gene. originally discovered in the laboratory of Dan A. Liebermann as a Myeloid differentiation primary response gene.

<span class="mw-page-title-main">Toll-like receptor 2</span> Cell surface receptor found in humans

Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the TLR2 gene. TLR2 has also been designated as CD282. TLR2 is one of the toll-like receptors and plays a role in the immune system. TLR2 is a membrane protein, a receptor, which is expressed on the surface of certain cells and recognizes foreign substances and passes on appropriate signals to the cells of the immune system.

<span class="mw-page-title-main">Toll-like receptor 5</span> Protein found in humans

Toll-like receptor 5, also known as TLR5, is a protein which in humans is encoded by the TLR5 gene. It is a member of the toll-like receptor (TLR) family. TLR5 is known to recognize bacterial flagellin from invading mobile bacteria. It has been shown to be involved in the onset of many diseases, including Inflammatory bowel disease due to the high expression of TLR in intestinal lamina propria dendritic cells. Recent studies have also shown that malfunctioning of TLR5 is likely related to rheumatoid arthritis, osteoclastogenesis, and bone loss. Abnormal TLR5 functioning is related to the onset of gastric, cervical, endometrial and ovarian cancers.

<span class="mw-page-title-main">Toll-like receptor 4</span> Cell surface receptor found in humans

Toll-like receptor 4 (TLR4), also designated as CD284, is a key activator of the innate immune response and plays a central role in the fight against bacterial infections. TLR4 is a transmembrane protein of approximately 95 kDa that is encoded by the TLR4 gene.

<span class="mw-page-title-main">Lymphocyte antigen 96</span> Protein-coding gene in the species Homo sapiens

Lymphocyte antigen 96, also known as "Myeloid Differentiation factor 2 (MD-2)," is a protein that in humans is encoded by the LY96 gene.

<span class="mw-page-title-main">HMGB1</span> Mammalian protein found in Homo sapiens

High mobility group box 1 protein, also known as high-mobility group protein 1 (HMG-1) and amphoterin, is a protein that in humans is encoded by the HMGB1 gene.

<span class="mw-page-title-main">AOAH</span> Protein-coding gene in the species Homo sapiens

Acyloxyacyl hydrolase, also known as AOAH, is a eukaryotic protein encoded by the AOAH gene. AOAH is produced by macrophages, dendritic cells, NK cells, ILC1 cells, neutrophils and renal proximal tubule cells.

<span class="mw-page-title-main">SIGIRR</span> Protein-coding gene in the species Homo sapiens

Single Ig IL-1-related receptor (SIGIRR), also called Toll/Interleukin-1 receptor 8 (TIR8) or Interleukin-1 receptor 8 (IL-1R8), is transmembrane protein encoded by gene SIGIRR, which modulate inflammation, immune response, and tumorigenesis of colonic epithelial cells.

<span class="mw-page-title-main">CD180</span> Protein-coding gene in the species Homo sapiens

CD180 antigen is a protein that in humans is encoded by the CD180 gene.

miR-155 Non-coding RNA in the species Homo sapiens

MiR-155 is a microRNA that in humans is encoded by the MIR155 host gene or MIR155HG. MiR-155 plays a role in various physiological and pathological processes. Exogenous molecular control in vivo of miR-155 expression may inhibit malignant growth, viral infections, and enhance the progression of cardiovascular diseases.

Murine caspase-11, and its human homologs caspase-4 and caspase-5, are mammalian intracellular receptor proteases activated by TLR4 and TLR3 signaling during the innate immune response. Caspase-11, also termed the non-canonical inflammasome, is activated by TLR3/TLR4-TRIF signaling and directly binds cytosolic lipopolysaccharide (LPS), a major structural element of Gram-negative bacterial cell walls. Activation of caspase-11 by LPS is known to cause the activation of other caspase proteins, leading to septic shock, pyroptosis, and often organismal death.

The interleukin-1 receptor (IL-1R) associated kinase (IRAK) family plays a crucial role in the protective response to pathogens introduced into the human body by inducing acute inflammation followed by additional adaptive immune responses. IRAKs are essential components of the Interleukin-1 receptor signaling pathway and some Toll-like receptor signaling pathways. Toll-like receptors (TLRs) detect microorganisms by recognizing specific pathogen-associated molecular patterns (PAMPs) and IL-1R family members respond the interleukin-1 (IL-1) family cytokines. These receptors initiate an intracellular signaling cascade through adaptor proteins, primarily, MyD88. This is followed by the activation of IRAKs. TLRs and IL-1R members have a highly conserved amino acid sequence in their cytoplasmic domain called the Toll/Interleukin-1 (TIR) domain. The elicitation of different TLRs/IL-1Rs results in similar signaling cascades due to their homologous TIR motif leading to the activation of mitogen-activated protein kinases (MAPKs) and the IκB kinase (IKK) complex, which initiates a nuclear factor-κB (NF-κB) and AP-1-dependent transcriptional response of pro-inflammatory genes. Understanding the key players and their roles in the TLR/IL-1R pathway is important because the presence of mutations causing the abnormal regulation of Toll/IL-1R signaling leading to a variety of acute inflammatory and autoimmune diseases.

References

  1. 1 2 3 "Nobel Prize in Physiology or Medicine 2011" (Press release). Nobel Foundation. October 3, 2011.
  2. 1 2 3 Poltorak, A.; He, X.; Smirnova, I.; Liu, M. Y.; Van Huffel, C.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; Freudenberg, M.; Ricciardi-Castagnoli, P.; Layton, B.; Beutler, B. (December 11, 1998). "Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene". Science. 282 (5396): 2085–2088. doi:10.1126/science.282.5396.2085. ISSN   0036-8075. PMID   9851930.
  3. Hemmi, Hiroaki; Kaisho, Tsuneyasu; Takeuchi, Osamu; Sato, Shintaro; Sanjo, Hideki; Hoshino, Katsuaki; Horiuchi, Takao; Tomizawa, Hideyuki; Takeda, Kiyoshi; Akira, Shizuo (January 22, 2002). "Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway". Nature Immunology. 3 (2): 196–200. doi:10.1038/ni758. ISSN   1529-2908. PMID   11812998. S2CID   1694900.
  4. Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; Akira, S. (December 7, 2000). "A Toll-like receptor recognizes bacterial DNA". Nature. 408 (6813): 740–745. Bibcode:2000Natur.408..740H. doi:10.1038/35047123. ISSN   0028-0836. PMID   11130078. S2CID   4405163.
  5. Takeuchi, O.; Hoshino, K.; Kawai, T.; Sanjo, H.; Takada, H.; Ogawa, T.; Takeda, K.; Akira, S. (October 1, 1999). "Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components". Immunity. 11 (4): 443–451. doi: 10.1016/s1074-7613(00)80119-3 . ISSN   1074-7613. PMID   10549626.
  6. Takeuchi, O.; Kawai, T.; Mühlradt, P. F.; Morr, M.; Radolf, J. D.; Zychlinsky, A.; Takeda, K.; Akira, S. (July 1, 2001). "Discrimination of bacterial lipoproteins by Toll-like receptor 6". International Immunology. 13 (7): 933–940. doi: 10.1093/intimm/13.7.933 . ISSN   0953-8178. PMID   11431423.
  7. Takeuchi, Osamu; Sato, Shintaro; Horiuchi, Takao; Hoshino, Katsuaki; Takeda, Kiyoshi; Dong, Zhongyun; Modlin, Robert L.; Akira, Shizuo (July 1, 2002). "Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins". Journal of Immunology. 169 (1): 10–14. doi: 10.4049/jimmunol.169.1.10 . ISSN   0022-1767. PMID   12077222. S2CID   22686400.
  8. Ravindran, S. (2013). "Profile of Bruce A. Beutler". Proceedings of the National Academy of Sciences. 110 (32): 12857–8. Bibcode:2013PNAS..11012857R. doi: 10.1073/pnas.1311624110 . PMC   3740904 . PMID   23858464.
  9. "Center for the Genetics of Host Defense - UT Southwestern, Dallas, TX" . Retrieved March 9, 2023.
  10. "Jewish Nobel Prize laureates - Physiology and medicine". www.science.co.il. Retrieved March 29, 2023.
  11. 1 2 3 "Bruce A. Beutler - Biographical - NobelPrize.org" . Retrieved March 9, 2023.
  12. 1 2 Beutler, E.; West, C.; Beutler, B. (October 1974). "Electrophoretic polymorphism of glutathione peroxidase". Annals of Human Genetics. 38 (2): 163–169. doi:10.1111/j.1469-1809.1974.tb01947.x. ISSN   0003-4800. PMID   4467780. S2CID   32294741.
  13. 1 2 Beutler, E.; Beutler, B.; Matsumoto, J. (July 15, 1975). "Glutathione peroxidase activity of inorganic selenium and seleno-DL-cysteine". Experientia. 31 (7): 769–770. doi:10.1007/BF01938453. ISSN   0014-4754. PMID   1140308. S2CID   26234261.
  14. Ohno, S. (January 1977). "The original function of MHC antigens as the general plasma membrane anchorage site of organogenesis-directing proteins". Immunological Reviews. 33: 59–69. doi:10.1111/j.1600-065X.1977.tb00362.x. ISSN   0105-2896. PMID   66186. S2CID   45992817.
  15. Beutler, B.; Nagai, Y.; Ohno, S.; Klein, G.; Shapiro, I. M. (March 1978). "The HLA-dependent expression of testis- organizing H-Y antigen by human male cells". Cell. 13 (3): 509–513. doi:10.1016/0092-8674(78)90324-0. ISSN   0092-8674. PMID   77737. S2CID   33827976.
  16. Easton, John (October 10, 2011). "Alumnus Bruce Beutler, MD'81, to receive 2011 Nobel Prize in Medicine". uchicago news. Retrieved March 9, 2023.
  17. "Bruce Beutler, MD". The American Society for Clinical Investigation. Retrieved October 18, 2023.
  18. 1 2 3 Beutler, B.; Greenwald, D.; Hulmes, J. D.; Chang, M.; Pan, Y. C.; Mathison, J.; Ulevitch, R.; Cerami, A. (August 1, 1985). "Identity of tumour necrosis factor and the macrophage-secreted factor cachectin". Nature. 316 (6028): 552–554. Bibcode:1985Natur.316..552B. doi:10.1038/316552a0. ISSN   0028-0836. PMID   2993897. S2CID   4339006.
  19. 1 2 Beutler, B.; Mahoney, J.; Le Trang, N.; Pekala, P.; Cerami, A. (May 1, 1985). "Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells". The Journal of Experimental Medicine. 161 (5): 984–995. doi:10.1084/jem.161.5.984. ISSN   0022-1007. PMC   2187615 . PMID   3872925.
  20. Aggarwal, B. B.; Kohr, W. J.; Hass, P. E.; Moffat, B.; Spencer, S. A.; Henzel, W. J.; Bringman, T. S.; Nedwin, G. E.; Goeddel, D. V.; Harkins, R. N. (February 25, 1985). "Human tumor necrosis factor. Production, purification, and characterization". The Journal of Biological Chemistry. 260 (4): 2345–2354. doi: 10.1016/S0021-9258(18)89560-6 . ISSN   0021-9258. PMID   3871770.
  21. 1 2 3 Beutler, B.; Milsark, I. W.; Cerami, A. C. (August 30, 1985). "Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin". Science. 229 (4716): 869–871. Bibcode:1985Sci...229..869B. doi:10.1126/science.3895437. ISSN   0036-8075. PMID   3895437.
  22. Dayer, J. M.; Beutler, B.; Cerami, A. (December 1, 1985). "Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts". The Journal of Experimental Medicine. 162 (6): 2163–2168. doi:10.1084/jem.162.6.2163. ISSN   0022-1007. PMC   2187983 . PMID   2999289.
  23. Feldmann, M.; Brennan, F. M.; Maini, R. N. (1996). "Role of cytokines in rheumatoid arthritis". Annual Review of Immunology. 14: 397–440. doi:10.1146/annurev.immunol.14.1.397. ISSN   0732-0582. PMID   8717520.
  24. Engelmann, H.; Novick, D.; Wallach, D. (January 25, 1990). "Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors". The Journal of Biological Chemistry. 265 (3): 1531–1536. doi: 10.1016/S0021-9258(19)40049-5 . ISSN   0021-9258. PMID   2153136.
  25. Loetscher, H.; Pan, Y. C.; Lahm, H. W.; Gentz, R.; Brockhaus, M.; Tabuchi, H.; Lesslauer, W. (April 20, 1990). "Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor". Cell. 61 (2): 351–359. doi:10.1016/0092-8674(90)90815-v. ISSN   0092-8674. PMID   2158862. S2CID   42245440.
  26. Nophar, Y.; Kemper, O.; Brakebusch, C.; Englemann, H.; Zwang, R.; Aderka, D.; Holtmann, H.; Wallach, D. (October 1, 1990). "Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor". The EMBO Journal. 9 (10): 3269–3278. doi:10.1002/j.1460-2075.1990.tb07526.x. ISSN   0261-4189. PMC   552060 . PMID   1698610.
  27. Schall, T. J.; Lewis, M.; Koller, K. J.; Lee, A.; Rice, G. C.; Wong, G. H.; Gatanaga, T.; Granger, G. A.; Lentz, R.; Raab, H. (April 20, 1990). "Molecular cloning and expression of a receptor for human tumor necrosis factor". Cell. 61 (2): 361–370. doi:10.1016/0092-8674(90)90816-w. ISSN   0092-8674. PMID   2158863. S2CID   36187863.
  28. Smith, C. A.; Davis, T.; Anderson, D.; Solam, L.; Beckmann, M. P.; Jerzy, R.; Dower, S. K.; Cosman, D.; Goodwin, R. G. (May 25, 1990). "A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins". Science. 248 (4958): 1019–1023. Bibcode:1990Sci...248.1019S. doi:10.1126/science.2160731. ISSN   0036-8075. PMID   2160731.
  29. Poltorak, A.; Peppel, K.; Beutler, B. (February 28, 1994). "Receptor-mediated label-transfer assay (RELAY): a novel method for the detection of plasma tumor necrosis factor at attomolar concentrations". Journal of Immunological Methods. 169 (1): 93–99. doi:10.1016/0022-1759(94)90128-7. ISSN   0022-1759. PMID   8133076.
  30. 1 2 Peppel, K.; Crawford, D.; Beutler, B. (December 1, 1991). "A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity". The Journal of Experimental Medicine. 174 (6): 1483–1489. doi:10.1084/jem.174.6.1483. ISSN   0022-1007. PMC   2119031 . PMID   1660525.
  31. Gardner, Jonathan (November 1, 2021). "A three-decade monopoly: how Amgen built a patent thicket around its top-selling drug | BioPharma Dive". BioPharma Dive. Retrieved March 9, 2023.
  32. Beutler, B.; Poltorak, A. (July 2001). "Sepsis and evolution of the innate immune response". Critical Care Medicine. 29 (7 Suppl): S2–6, discussion S6–7. doi:10.1097/00003246-200107001-00002. ISSN   0090-3493. PMID   11445725.
  33. Beutler, Bruce (1988). "Orchestration of septic shock by cytokines: the role of cachectin (tumor necrosis factor)". In Roth, B. (ed.). Molecular and Cellular Mechanisms of Septic Shock. New York: Alan R. Liss, Inc. pp. 219–235.
  34. Beutler B (1992). "Cytokines in Shock: 1992". In Lamy M, Thijs LG (eds.). Mediators of Sepsis. Heidelberg: Springer Berlin. pp. 51–67.
  35. Johnson, A. G.; Gaines, S.; Landy, M. (February 1, 1956). "Studies on the O antigen of Salmonella typhosa. V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide". The Journal of Experimental Medicine. 103 (2): 225–246. doi:10.1084/jem.103.2.225. ISSN   0022-1007. PMC   2136584 . PMID   13286429.
  36. 1 2 Coutinho, A.; Meo, T. (December 1978). "Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice". Immunogenetics. 7 (1): 17–24. doi:10.1007/BF01843983. ISSN   0093-7711. PMID   21302052. S2CID   29425605.
  37. Watson, J.; Riblet, R. (November 1, 1974). "Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic respones[sic] to lipopolysaccharides". The Journal of Experimental Medicine. 140 (5): 1147–1161. doi:10.1084/jem.140.5.1147. ISSN   0022-1007. PMC   2139714 . PMID   4138849.
  38. Sultzer, B. M. (September 21, 1968). "Genetic control of leucocyte responses to endotoxin". Nature. 219 (5160): 1253–1254. Bibcode:1968Natur.219.1253S. doi:10.1038/2191253a0. ISSN   0028-0836. PMID   4877918. S2CID   41633552.
  39. Beutler, Bruce (January 2002). "Toll-like receptors: how they work and what they do". Current Opinion in Hematology. 9 (1): 2–10. doi:10.1097/00062752-200201000-00002. ISSN   1065-6251. PMID   11753071. S2CID   36843541.
  40. Du, X.; Poltorak, A.; Silva, M.; Beutler, B. (1999). "Analysis of Tlr4-mediated LPS signal transduction in macrophages by mutational modification of the receptor". Blood Cells, Molecules & Diseases. 25 (5–6): 328–338. doi:10.1006/bcmd.1999.0262. ISSN   1079-9796. PMID   10660480.
  41. 1 2 3 Poltorak, A.; Ricciardi-Castagnoli, P.; Citterio, S.; Beutler, B. (February 29, 2000). "Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation". Proceedings of the National Academy of Sciences of the United States of America. 97 (5): 2163–2167. Bibcode:2000PNAS...97.2163P. doi: 10.1073/pnas.040565397 . ISSN   0027-8424. PMC   15771 . PMID   10681462.
  42. Shimazu, R.; Akashi, S.; Ogata, H.; Nagai, Y.; Fukudome, K.; Miyake, K.; Kimoto, M. (June 7, 1999). "MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4". The Journal of Experimental Medicine. 189 (11): 1777–1782. doi:10.1084/jem.189.11.1777. ISSN   0022-1007. PMC   2193086 . PMID   10359581.
  43. Park, Beom Seok; Song, Dong Hyun; Kim, Ho Min; Choi, Byong-Seok; Lee, Hayyoung; Lee, Jie-Oh (April 30, 2009). "The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex". Nature. 458 (7242): 1191–1195. Bibcode:2009Natur.458.1191P. doi:10.1038/nature07830. ISSN   1476-4687. PMID   19252480. S2CID   4396446.
  44. Lemaitre, B.; Nicolas, E.; Michaut, L.; Reichhart, J. M.; Hoffmann, J. A. (September 20, 1996). "The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults". Cell. 86 (6): 973–983. doi: 10.1016/s0092-8674(00)80172-5 . ISSN   0092-8674. PMID   8808632. S2CID   10736743.
  45. Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C. A. (July 24, 1997). "A human homologue of the Drosophila Toll protein signals activation of adaptive immunity". Nature. 388 (6640): 394–397. doi: 10.1038/41131 . ISSN   0028-0836. PMID   9237759. S2CID   4311321.
  46. Kirschning, C. J.; Wesche, H.; Merrill Ayres, T.; Rothe, M. (December 7, 1998). "Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide". The Journal of Experimental Medicine. 188 (11): 2091–2097. doi:10.1084/jem.188.11.2091. ISSN   0022-1007. PMC   2212382 . PMID   9841923.
  47. Yang, R. B.; Mark, M. R.; Gray, A.; Huang, A.; Xie, M. H.; Zhang, M.; Goddard, A.; Wood, W. I.; Gurney, A. L.; Godowski, P. J. (September 17, 1998). "Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling". Nature. 395 (6699): 284–288. Bibcode:1998Natur.395..284Y. doi:10.1038/26239. ISSN   0028-0836. PMID   9751057. S2CID   4422827.
  48. Beutler, B.; Poltorak, A. (June 2000). "Positional cloning of Lps, and the general role of toll-like receptors in the innate immune response". European Cytokine Network. 11 (2): 143–152. ISSN   1148-5493. PMID   10903793.
  49. Christensen, Sean R.; Shupe, Jonathan; Nickerson, Kevin; Kashgarian, Michael; Flavell, Richard A.; Shlomchik, Mark J. (September 2006). "Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus". Immunity. 25 (3): 417–428. doi: 10.1016/j.immuni.2006.07.013 . ISSN   1074-7613. PMID   16973389.
  50. Brown, Grant J.; Cañete, Pablo F.; Wang, Hao; Medhavy, Arti; Bones, Josiah; Roco, Jonathan A.; He, Yuke; Qin, Yuting; Cappello, Jean; Ellyard, Julia I.; Bassett, Katharine; Shen, Qian; Burgio, Gaetan; Zhang, Yaoyuan; Turnbull, Cynthia (May 2022). "TLR7 gain-of-function genetic variation causes human lupus". Nature. 605 (7909): 349–356. Bibcode:2022Natur.605..349B. doi:10.1038/s41586-022-04642-z. ISSN   1476-4687. PMC   9095492 . PMID   35477763.
  51. Leibler, Claire; John, Shinu; Elsner, Rebecca A.; Thomas, Kayla B.; Smita, Shuchi; Joachim, Stephen; Levack, Russell C.; Callahan, Derrick J.; Gordon, Rachael A.; Bastacky, Sheldon; Fukui, Ryutaro; Miyake, Kensuke; Gingras, Sebastien; Nickerson, Kevin M.; Shlomchik, Mark J. (October 2022). "Genetic dissection of TLR9 reveals complex regulatory and cryptic proinflammatory roles in mouse lupus". Nature Immunology. 23 (10): 1457–1469. doi:10.1038/s41590-022-01310-2. ISSN   1529-2916. PMC   9561083 . PMID   36151396.
  52. 1 2 Baccala, Roberto; Gonzalez-Quintial, Rosana; Blasius, Amanda L.; Rimann, Ivo; Ozato, Keiko; Kono, Dwight H.; Beutler, Bruce; Theofilopoulos, Argyrios N. (February 19, 2013). "Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus". Proceedings of the National Academy of Sciences of the United States of America. 110 (8): 2940–2945. Bibcode:2013PNAS..110.2940B. doi: 10.1073/pnas.1222798110 . ISSN   1091-6490. PMC   3581947 . PMID   23382217.
  53. Kono, Dwight H.; Haraldsson, M. Katarina; Lawson, Brian R.; Pollard, K. Michael; Koh, Yi Ting; Du, Xin; Arnold, Carrie N.; Baccala, Roberto; Silverman, Gregg J.; Beutler, Bruce A.; Theofilopoulos, Argyrios N. (July 21, 2009). "Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus". Proceedings of the National Academy of Sciences of the United States of America. 106 (29): 12061–12066. Bibcode:2009PNAS..10612061K. doi: 10.1073/pnas.0905441106 . ISSN   1091-6490. PMC   2715524 . PMID   19574451.
  54. Lau, Christina M.; Broughton, Courtney; Tabor, Abigail S.; Akira, Shizuo; Flavell, Richard A.; Mamula, Mark J.; Christensen, Sean R.; Shlomchik, Mark J.; Viglianti, Gregory A.; Rifkin, Ian R.; Marshak-Rothstein, Ann (November 7, 2005). "RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement". The Journal of Experimental Medicine. 202 (9): 1171–1177. doi:10.1084/jem.20050630. ISSN   0022-1007. PMC   2213226 . PMID   16260486.
  55. Leadbetter, Elizabeth A.; Rifkin, Ian R.; Hohlbaum, Andreas M.; Beaudette, Britte C.; Shlomchik, Mark J.; Marshak-Rothstein, Ann (April 11, 2002). "Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors". Nature. 416 (6881): 603–607. doi:10.1038/416603a. ISSN   0028-0836. PMID   11948342. S2CID   4370544.
  56. Viglianti, Gregory A.; Lau, Christina M.; Hanley, Timothy M.; Miko, Benjamin A.; Shlomchik, Mark J.; Marshak-Rothstein, Ann (December 2003). "Activation of autoreactive B cells by CpG dsDNA". Immunity. 19 (6): 837–847. doi: 10.1016/s1074-7613(03)00323-6 . ISSN   1074-7613. PMID   14670301.
  57. Beutler, Bruce; Du, Xin; Xia, Yu (July 2007). "Precis on forward genetics in mice". Nature Immunology. 8 (7): 659–664. doi:10.1038/ni0707-659. ISSN   1529-2908. PMID   17579639. S2CID   28309476.
  58. 1 2 Hoebe, K.; Du, X.; Georgel, P.; Janssen, E.; Tabeta, K.; Kim, S. O.; Goode, J.; Lin, P.; Mann, N.; Mudd, S.; Crozat, K.; Sovath, S.; Han, J.; Beutler, B. (August 14, 2003). "Identification of Lps2 as a key transducer of MyD88-independent TIR signalling". Nature. 424 (6950): 743–748. Bibcode:2003Natur.424..743H. doi:10.1038/nature01889. ISSN   1476-4687. PMID   12872135. S2CID   15608748.
  59. Hoebe, Kasper; Georgel, Philippe; Rutschmann, Sophie; Du, Xin; Mudd, Suzanne; Crozat, Karine; Sovath, Sosathya; Shamel, Louis; Hartung, Thomas; Zähringer, Ulrich; Beutler, Bruce (February 3, 2005). "CD36 is a sensor of diacylglycerides". Nature. 433 (7025): 523–527. Bibcode:2005Natur.433..523H. doi:10.1038/nature03253. ISSN   1476-4687. PMID   15690042. S2CID   4406318.
  60. 1 2 Tabeta, Koichi; Hoebe, Kasper; Janssen, Edith M.; Du, Xin; Georgel, Philippe; Crozat, Karine; Mudd, Suzanne; Mann, Navjiwan; Sovath, Sosathya; Goode, Jason; Shamel, Louis; Herskovits, Anat A.; Portnoy, Daniel A.; Cooke, Michael; Tarantino, Lisa M. (January 15, 2006). "The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9". Nature Immunology. 7 (2): 156–164. doi:10.1038/ni1297. ISSN   1529-2908. PMID   16415873. S2CID   33401155.
  61. Croker, Ben A.; Lawson, Brian R.; Rutschmann, Sophie; Berger, Michael; Eidenschenk, Celine; Blasius, Amanda L.; Moresco, Eva Marie Y.; Sovath, Sosathya; Cengia, Louise; Shultz, Leonard D.; Theofilopoulos, Argyrios N.; Pettersson, Sven; Beutler, Bruce Alan (September 30, 2008). "Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger". Proceedings of the National Academy of Sciences of the United States of America. 105 (39): 15028–15033. Bibcode:2008PNAS..10515028C. doi: 10.1073/pnas.0806619105 . ISSN   1091-6490. PMC   2567487 . PMID   18806225.
  62. Shi, Hexin; Wang, Ying; Li, Xiaohong; Zhan, Xiaoming; Tang, Miao; Fina, Maggy; Su, Lijing; Pratt, David; Bu, Chun Hui; Hildebrand, Sara; Lyon, Stephen; Scott, Lindsay; Quan, Jiexia; Sun, Qihua; Russell, Jamie (December 7, 2015). "NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component". Nature Immunology. 17 (3): 250–258. doi:10.1038/ni.3333. ISSN   1529-2916. PMC   4862588 . PMID   26642356.
  63. Sun, Lei; Jiang, Zhengfan; Acosta-Rodriguez, Victoria A.; Berger, Michael; Du, Xin; Choi, Jin Huk; Wang, Jianhui; Wang, Kuan-Wen; Kilaru, Gokhul K.; Mohawk, Jennifer A.; Quan, Jiexia; Scott, Lindsay; Hildebrand, Sara; Li, Xiaohong; Tang, Miao (November 6, 2017). "HCFC2 is needed for IRF1- and IRF2-dependent Tlr3 transcription and for survival during viral infections". The Journal of Experimental Medicine. 214 (11): 3263–3277. doi:10.1084/jem.20161630. ISSN   1540-9538. PMC   5679162 . PMID   28970238.
  64. Shi, Hexin; Sun, Lei; Wang, Ying; Liu, Aijie; Zhan, Xiaoming; Li, Xiaohong; Tang, Miao; Anderton, Priscilla; Hildebrand, Sara; Quan, Jiexia; Ludwig, Sara; Moresco, Eva Marie Y.; Beutler, Bruce (March 2, 2021). "N4BP1 negatively regulates NF-κB by binding and inhibiting NEMO oligomerization". Nature Communications. 12 (1): 1379. Bibcode:2021NatCo..12.1379S. doi:10.1038/s41467-021-21711-5. ISSN   2041-1723. PMC   7925594 . PMID   33654074.
  65. Kim, You-Me; Brinkmann, Melanie M.; Paquet, Marie-Eve; Ploegh, Hidde L. (March 13, 2008). "UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes". Nature. 452 (7184): 234–238. Bibcode:2008Natur.452..234K. doi:10.1038/nature06726. ISSN   1476-4687. PMID   18305481. S2CID   4397023.
  66. 1 2 Casrouge, Armanda; Zhang, Shen-Ying; Eidenschenk, Céline; Jouanguy, Emmanuelle; Puel, Anne; Yang, Kun; Alcais, Alexandre; Picard, Capucine; Mahfoufi, Nora; Nicolas, Nathalie; Lorenzo, Lazaro; Plancoulaine, Sabine; Sénéchal, Brigitte; Geissmann, Frédéric; Tabeta, Koichi (October 13, 2006). "Herpes simplex virus encephalitis in human UNC-93B deficiency". Science. 314 (5797): 308–312. Bibcode:2006Sci...314..308C. doi: 10.1126/science.1128346 . ISSN   1095-9203. PMID   16973841. S2CID   12501759.
  67. Blasius, Amanda L.; Arnold, Carrie N.; Georgel, Philippe; Rutschmann, Sophie; Xia, Yu; Lin, Pei; Ross, Charles; Li, Xiaohong; Smart, Nora G.; Beutler, Bruce (November 16, 2010). "Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells". Proceedings of the National Academy of Sciences of the United States of America. 107 (46): 19973–19978. Bibcode:2010PNAS..10719973B. doi: 10.1073/pnas.1014051107 . ISSN   1091-6490. PMC   2993408 . PMID   21045126.
  68. Lazar, Daniel C.; Wang, Wesley W.; Chiu, Tzu-Yuan; Li, Weichao; Jadhav, Appaso M.; Wozniak, Jacob M.; Gazaniga, Nathalia; Theofilopoulos, Argyrios N.; Teijaro, John R.; Parker, Christopher G. (October 7, 2022), Chemoproteomics-guided development of SLC15A4 inhibitors with anti-inflammatory activity, doi:10.1101/2022.10.07.511216, S2CID   252820006
  69. Beutler, Bruce; Crozat, Karine; Koziol, James A.; Georgel, Philippe (February 2005). "Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model". Current Opinion in Immunology. 17 (1): 36–43. doi:10.1016/j.coi.2004.11.004. ISSN   0952-7915. PMID   15653308.
  70. Beutler, Bruce; Eidenschenk, Celine; Crozat, Karine; Imler, Jean-Luc; Takeuchi, Osamu; Hoffmann, Jules A.; Akira, Shizuo (October 2007). "Genetic analysis of resistance to viral infection". Nature Reviews. Immunology. 7 (10): 753–766. doi:10.1038/nri2174. ISSN   1474-1741. PMID   17893693. S2CID   37705652.
  71. Croker, B.; Crozat, K.; Berger, M.; Xia, Y.; Sovath, S.; Schaffer, L.; Eleftherianos, I.; Imler, J. L.; Beutler, B. (2007). "ATP-sensitive potassium channels mediate survival during infection in mammals and insects". Nature Genetics. 39 (12): 1453–1460. doi:10.1038/ng.2007.25. PMID   18026101. S2CID   41183715.
  72. Brandl, Katharina; Rutschmann, Sophie; Li, Xiaohong; Du, Xin; Xiao, Nengming; Schnabl, Bernd; Brenner, David A.; Beutler, Bruce (March 3, 2009). "Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response". Proceedings of the National Academy of Sciences of the United States of America. 106 (9): 3300–3305. Bibcode:2009PNAS..106.3300B. doi: 10.1073/pnas.0813036106 . ISSN   1091-6490. PMC   2651297 . PMID   19202076.
  73. Brandl, Katharina; Sun, Lei; Neppl, Christina; Siggs, Owen M.; Le Gall, Sylvain M.; Tomisato, Wataru; Li, Xiaohong; Du, Xin; Maennel, Daniela N.; Blobel, Carl P.; Beutler, Bruce (November 16, 2010). "MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands". Proceedings of the National Academy of Sciences of the United States of America. 107 (46): 19967–19972. Bibcode:2010PNAS..10719967B. doi: 10.1073/pnas.1014669107 . ISSN   1091-6490. PMC   2993336 . PMID   21041656.
  74. Brandl, Katharina; Tomisato, Wataru; Li, Xiaohong; Neppl, Christina; Pirie, Elaine; Falk, Werner; Xia, Yu; Moresco, Eva Marie Y.; Baccala, Roberto; Theofilopoulos, Argyrios N.; Schnabl, Bernd; Beutler, Bruce (July 31, 2012). "Yip1 domain family, member 6 (Yipf6) mutation induces spontaneous intestinal inflammation in mice". Proceedings of the National Academy of Sciences of the United States of America. 109 (31): 12650–12655. Bibcode:2012PNAS..10912650B. doi: 10.1073/pnas.1210366109 . ISSN   1091-6490. PMC   3412000 . PMID   22802641.
  75. McAlpine, William; Sun, Lei; Wang, Kuan-Wen; Liu, Aijie; Jain, Ruchi; San Miguel, Miguel; Wang, Jianhui; Zhang, Zhao; Hayse, Braden; McAlpine, Sarah Grace; Choi, Jin Huk; Zhong, Xue; Ludwig, Sara; Russell, Jamie; Zhan, Xiaoming (December 4, 2018). "Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function". Proceedings of the National Academy of Sciences of the United States of America. 115 (49): E11523–E11531. Bibcode:2018PNAS..11511523M. doi: 10.1073/pnas.1814753115 . ISSN   1091-6490. PMC   6298088 . PMID   30442666.
  76. McAlpine, William; Wang, Kuan-Wen; Choi, Jin Huk; San Miguel, Miguel; McAlpine, Sarah Grace; Russell, Jamie; Ludwig, Sara; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Choi, Mihwa; Wang, Tao; Bu, Chun Hui; Murray, Anne R.; Moresco, Eva Marie Y. (September 27, 2018). "The class I myosin MYO1D binds to lipid and protects against colitis". Disease Models & Mechanisms. 11 (9): dmm035923. doi:10.1242/dmm.035923. ISSN   1754-8411. PMC   6176994 . PMID   30279225.
  77. Wang, Kuan-Wen; Zhan, Xiaoming; McAlpine, William; Zhang, Zhao; Choi, Jin Huk; Shi, Hexin; Misawa, Takuma; Yue, Tao; Zhang, Duanwu; Wang, Ying; Ludwig, Sara; Russell, Jamie; Tang, Miao; Li, Xiaohong; Murray, Anne R. (June 4, 2019). "Enhanced susceptibility to chemically induced colitis caused by excessive endosomal TLR signaling in LRBA-deficient mice". Proceedings of the National Academy of Sciences of the United States of America. 116 (23): 11380–11389. Bibcode:2019PNAS..11611380W. doi: 10.1073/pnas.1901407116 . ISSN   1091-6490. PMC   6561264 . PMID   31097594.
  78. Turer, Emre; McAlpine, William; Wang, Kuan-Wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R.; Beutler, Bruce (February 14, 2017). "Creatine maintains intestinal homeostasis and protects against colitis". Proceedings of the National Academy of Sciences of the United States of America. 114 (7): E1273–E1281. Bibcode:2017PNAS..114E1273T. doi: 10.1073/pnas.1621400114 . ISSN   1091-6490. PMC   5321020 . PMID   28137860.
  79. SoRelle, Jeffrey A.; Chen, Zhe; Wang, Jianhui; Yue, Tao; Choi, Jin Huk; Wang, Kuan-Wen; Zhong, Xue; Hildebrand, Sara; Russell, Jamie; Scott, Lindsay; Xu, Darui; Zhan, Xiaowei; Bu, Chun Hui; Wang, Tao; Choi, Mihwa (April 2021). "Dominant atopy risk mutations identified by mouse forward genetic analysis". Allergy. 76 (4): 1095–1108. doi:10.1111/all.14564. ISSN   1398-9995. PMC   7889751 . PMID   32810290.
  80. 1 2 Chatenoud, Lucienne; Marquet, Cindy; Valette, Fabrice; Scott, Lindsay; Quan, Jiexia; Bu, Chun Hui; Hildebrand, Sara; Moresco, Eva Marie Y.; Bach, Jean-François; Beutler, Bruce (June 1, 2022). "Modulation of autoimmune diabetes by N-ethyl-N-nitrosourea- induced mutations in non-obese diabetic mice". Disease Models & Mechanisms. 15 (6): dmm049484. doi:10.1242/dmm.049484. ISSN   1754-8411. PMC   9178510 . PMID   35502705.
  81. 1 2 Foray, Anne-Perrine; Candon, Sophie; Hildebrand, Sara; Marquet, Cindy; Valette, Fabrice; Pecquet, Coralie; Lemoine, Sebastien; Langa-Vives, Francina; Dumas, Michael; Hu, Peipei; Santamaria, Pere; You, Sylvaine; Lyon, Stephen; Scott, Lindsay; Bu, Chun Hui (November 23, 2021). "De novo germline mutation in the dual specificity phosphatase 10 gene accelerates autoimmune diabetes". Proceedings of the National Academy of Sciences of the United States of America. 118 (47): e2112032118. Bibcode:2021PNAS..11812032F. doi: 10.1073/pnas.2112032118 . ISSN   1091-6490. PMC   8617500 . PMID   34782469.
  82. 1 2 3 Zhang, Zhao; Turer, Emre; Li, Xiaohong; Zhan, Xiaoming; Choi, Mihwa; Tang, Miao; Press, Amanda; Smith, Steven R.; Divoux, Adeline; Moresco, Eva Marie Y.; Beutler, Bruce (October 18, 2016). "Insulin resistance and diabetes caused by genetic or diet-induced KBTBD2 deficiency in mice". Proceedings of the National Academy of Sciences of the United States of America. 113 (42): E6418–E6426. Bibcode:2016PNAS..113E6418Z. doi: 10.1073/pnas.1614467113 . ISSN   1091-6490. PMC   5081616 . PMID   27708159.
  83. Turer, Emre E.; San Miguel, Miguel; Wang, Kuan-Wen; McAlpine, William; Ou, Feiya; Li, Xiaohong; Tang, Miao; Zang, Zhao; Wang, Jianhui; Hayse, Braden; Evers, Bret; Zhan, Xiaoming; Russell, Jamie; Beutler, Bruce (December 18, 2018). "A viable hypomorphic Arnt2 mutation causes hyperphagic obesity, diabetes and hepatic steatosis". Disease Models & Mechanisms. 11 (12): dmm035451. doi:10.1242/dmm.035451. ISSN   1754-8411. PMC   6307907 . PMID   30563851.
  84. 1 2 3 Zhang, Zhao; Jiang, Yiao; Su, Lijing; Ludwig, Sara; Zhang, Xuechun; Tang, Miao; Li, Xiaohong; Anderton, Priscilla; Zhan, Xiaoming; Choi, Mihwa; Russell, Jamie; Bu, Chun-Hui; Lyon, Stephen; Xu, Darui; Hildebrand, Sara (November 1, 2022). "Obesity caused by an OVOL2 mutation reveals dual roles of OVOL2 in promoting thermogenesis and limiting white adipogenesis". Cell Metabolism. 34 (11): 1860–1874.e4. doi:10.1016/j.cmet.2022.09.018. ISSN   1932-7420. PMC   9633419 . PMID   36228616.
  85. 1 2 Berger, Michael; Krebs, Philippe; Crozat, Karine; Li, Xiaohong; Croker, Ben A.; Siggs, Owen M.; Popkin, Daniel; Du, Xin; Lawson, Brian R.; Theofilopoulos, Argyrios N.; Xia, Yu; Khovananth, Kevin; Moresco, Eva Marie; Satoh, Takashi; Takeuchi, Osamu (April 2010). "An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence". Nature Immunology. 11 (4): 335–343. doi:10.1038/ni.1847. ISSN   1529-2916. PMC   2861894 . PMID   20190759.
  86. Siggs, Owen M.; Arnold, Carrie N.; Huber, Christoph; Pirie, Elaine; Xia, Yu; Lin, Pei; Nemazee, David; Beutler, Bruce (May 2011). "The P4-type ATPase ATP11C is essential for B lymphopoiesis in adult bone marrow". Nature Immunology. 12 (5): 434–440. doi:10.1038/ni.2012. ISSN   1529-2916. PMC   3079768 . PMID   21423172.
  87. Siggs, Owen M.; Li, Xiaohong; Xia, Yu; Beutler, Bruce (January 16, 2012). "ZBTB1 is a determinant of lymphoid development". The Journal of Experimental Medicine. 209 (1): 19–27. doi:10.1084/jem.20112084. ISSN   1540-9538. PMC   3260866 . PMID   22201126.
  88. 1 2 Choi, Jin Huk; Han, Jonghee; Theodoropoulos, Panayotis C.; Zhong, Xue; Wang, Jianhui; Medler, Dawson; Ludwig, Sara; Zhan, Xiaoming; Li, Xiaohong; Tang, Miao; Gallagher, Thomas; Yu, Gang; Beutler, Bruce (March 3, 2020). "Essential requirement for nicastrin in marginal zone and B-1 B cell development". Proceedings of the National Academy of Sciences of the United States of America. 117 (9): 4894–4901. Bibcode:2020PNAS..117.4894C. doi: 10.1073/pnas.1916645117 . ISSN   1091-6490. PMC   7060662 . PMID   32071239.
  89. 1 2 Choi, Jin Huk; Zhong, Xue; McAlpine, William; Liao, Tzu-Chieh; Zhang, Duanwu; Fang, Beibei; Russell, Jamie; Ludwig, Sara; Nair-Gill, Evan; Zhang, Zhao; Wang, Kuan-Wen; Misawa, Takuma; Zhan, Xiaoming; Choi, Mihwa; Wang, Tao (May 10, 2019). "LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling". Science. 364 (6440): eaau0812. doi:10.1126/science.aau0812. ISSN   1095-9203. PMC   7206793 . PMID   31073040.
  90. 1 2 Choi, Jin Huk; Zhong, Xue; Zhang, Zhao; Su, Lijing; McAlpine, William; Misawa, Takuma; Liao, Tzu-Chieh; Zhan, Xiaoming; Russell, Jamie; Ludwig, Sara; Li, Xiaohong; Tang, Miao; Anderton, Priscilla; Moresco, Eva Marie Y.; Beutler, Bruce (April 6, 2020). "Essential cell-extrinsic requirement for PDIA6 in lymphoid and myeloid development". The Journal of Experimental Medicine. 217 (4): e20190006. doi:10.1084/jem.20190006. ISSN   1540-9538. PMC   7144532 . PMID   31985756.
  91. 1 2 Zhang, Duanwu; Yue, Tao; Choi, Jin Huk; Nair-Gill, Evan; Zhong, Xue; Wang, Kuan-Wen; Zhan, Xiaoming; Li, Xiaohong; Choi, Mihwa; Tang, Miao; Quan, Jiexia; Hildebrand, Sara; Moresco, Eva Marie Y.; Beutler, Bruce (October 2019). "Syndromic immune disorder caused by a viable hypomorphic allele of spliceosome component Snrnp40". Nature Immunology. 20 (10): 1322–1334. doi:10.1038/s41590-019-0464-4. ISSN   1529-2916. PMC   7179765 . PMID   31427773.
  92. 1 2 Zhong, Xue; Choi, Jin Huk; Hildebrand, Sara; Ludwig, Sara; Wang, Jianhui; Nair-Gill, Evan; Liao, Tzu-Chieh; Moresco, James J.; Liu, Aijie; Quan, Jiexia; Sun, Qihua; Zhang, Duanwu; Zhan, Xiaoming; Choi, Mihwa; Li, Xiaohong (May 3, 2022). "RNPS1 inhibits excessive tumor necrosis factor/tumor necrosis factor receptor signaling to support hematopoiesis in mice". Proceedings of the National Academy of Sciences of the United States of America. 119 (18): e2200128119. Bibcode:2022PNAS..11900128Z. doi: 10.1073/pnas.2200128119 . ISSN   1091-6490. PMC   9170173 . PMID   35482923.
  93. 1 2 Zhong, Xue; Su, Lijing; Yang, Yi; Nair-Gill, Evan; Tang, Miao; Anderton, Priscilla; Li, Xiaohong; Wang, Jianhui; Zhan, Xiaoming; Tomchick, Diana R.; Brautigam, Chad A.; Moresco, Eva Marie Y.; Choi, Jin Huk; Beutler, Bruce (April 14, 2020). "Genetic and structural studies of RABL3 reveal an essential role in lymphoid development and function". Proceedings of the National Academy of Sciences of the United States of America. 117 (15): 8563–8572. Bibcode:2020PNAS..117.8563Z. doi: 10.1073/pnas.2000703117 . ISSN   1091-6490. PMC   7165429 . PMID   32220963.
  94. 1 2 Misawa, Takuma; SoRelle, Jeffrey A.; Choi, Jin Huk; Yue, Tao; Wang, Kuan-Wen; McAlpine, William; Wang, Jianhui; Liu, Aijie; Tabeta, Koichi; Turer, Emre E.; Evers, Bret; Nair-Gill, Evan; Poddar, Subhajit; Su, Lijing; Ou, Feiya (January 24, 2020). "Mutual inhibition between Prkd2 and Bcl6 controls T follicular helper cell differentiation". Science Immunology. 5 (43): eaaz0085. doi:10.1126/sciimmunol.aaz0085. ISSN   2470-9468. PMC   7278039 . PMID   31980486.
  95. Arnold, Carrie N.; Pirie, Elaine; Dosenovic, Pia; McInerney, Gerald M.; Xia, Yu; Wang, Nathaniel; Li, Xiaohong; Siggs, Owen M.; Karlsson Hedestam, Gunilla B.; Beutler, Bruce (July 31, 2012). "A forward genetic screen reveals roles for Nfkbid, Zeb1, and Ruvbl2 in humoral immunity". Proceedings of the National Academy of Sciences of the United States of America. 109 (31): 12286–12293. doi: 10.1073/pnas.1209134109 . ISSN   1091-6490. PMC   3411946 . PMID   22761313.
  96. Choi, Jin Huk; Wang, Kuan-Wen; Zhang, Duanwu; Zhan, Xiaowei; Wang, Tao; Bu, Chun-Hui; Behrendt, Cassie L.; Zeng, Ming; Wang, Ying; Misawa, Takuma; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Scott, Lindsay; Hildebrand, Sara (February 14, 2017). "IgD class switching is initiated by microbiota and limited to mucosa-associated lymphoid tissue in mice". Proceedings of the National Academy of Sciences of the United States of America. 114 (7): E1196–E1204. Bibcode:2017PNAS..114E1196C. doi: 10.1073/pnas.1621258114 . ISSN   1091-6490. PMC   5321007 . PMID   28137874.
  97. Yue, Tao; Zhan, Xiaoming; Zhang, Duanwu; Jain, Ruchi; Wang, Kuan-Wen; Choi, Jin Huk; Misawa, Takuma; Su, Lijing; Quan, Jiexia; Hildebrand, Sara; Xu, Darui; Li, Xiaohong; Turer, Emre; Sun, Lei; Moresco, Eva Marie Y. (May 14, 2021). "SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell-mediated immunity". Science. 372 (6543): eaba4220. doi:10.1126/science.aba4220. ISSN   1095-9203. PMC   8442736 . PMID   33986151.
  98. 1 2 Nair-Gill, Evan; Bonora, Massimo; Zhong, Xue; Liu, Aijie; Miranda, Amber; Stewart, Nathan; Ludwig, Sara; Russell, Jamie; Gallagher, Thomas; Pinton, Paolo; Beutler, Bruce (May 3, 2021). "Calcium flux control by Pacs1-Wdr37 promotes lymphocyte quiescence and lymphoproliferative diseases". The EMBO Journal. 40 (9): e104888. doi:10.15252/embj.2020104888. ISSN   1460-2075. PMC   8090855 . PMID   33630350.
  99. Du, X.; She, E.; Gelbart, T.; Truksa, J.; Lee, P.; Xia, Y.; Khovananth, K.; Mudd, S.; Mann, N.; Moresco, E. M. Y.; Beutler, E.; Beutler, B. (2008). "The serine protease TMPRSS6 is required to sense iron deficiency". Science. 320 (5879): 1088–1092. Bibcode:2008Sci...320.1088D. doi:10.1126/science.1157121. PMC   2430097 . PMID   18451267.
  100. Du, X.; Schwander, M.; Moresco, E. M. Y.; Viviani, P.; Haller, C.; Hildebrand, M. S.; Pak, K.; Tarantino, L.; Roberts, A.; Richardson, H.; Koob, G.; Najmabadi, H.; Ryan, A. F.; Smith, R. J. H.; Muller, U.; Beutler, B. (2008). "A catechol-O-methyltransferase that is essential for auditory function in mice and humans". Proceedings of the National Academy of Sciences. 105 (38): 14609–14614. Bibcode:2008PNAS..10514609D. doi: 10.1073/pnas.0807219105 . PMC   2567147 . PMID   18794526.
  101. Blasius, Amanda L.; Brandl, Katharina; Crozat, Karine; Xia, Yu; Khovananth, Kevin; Krebs, Philippe; Smart, Nora G.; Zampolli, Antonella; Ruggeri, Zaverio M.; Beutler, Bruce A. (February 24, 2009). "Mice with mutations of Dock7 have generalized hypopigmentation and white-spotting but show normal neurological function". Proceedings of the National Academy of Sciences of the United States of America. 106 (8): 2706–2711. Bibcode:2009PNAS..106.2706B. doi: 10.1073/pnas.0813208106 . ISSN   1091-6490. PMC   2650330 . PMID   19202056.
  102. Rutschmann, Sophie; Crozat, Karine; Li, Xiaohong; Du, Xin; Hanselman, Jeffrey C.; Shigeoka, Alana A.; Brandl, Katharina; Popkin, Daniel L.; McKay, Dianne B.; Xia, Yu; Moresco, Eva Marie Y.; Beutler, Bruce (April 2012). "Hypopigmentation and maternal-zygotic embryonic lethality caused by a hypomorphic mbtps1 mutation in mice". G3: Genes, Genomes, Genetics. 2 (4): 499–504. doi:10.1534/g3.112.002196. ISSN   2160-1836. PMC   3337478 . PMID   22540041.
  103. Chen, Zhe; Holland, William; Shelton, John M.; Ali, Aktar; Zhan, Xiaoming; Won, Sungyong; Tomisato, Wataru; Liu, Chen; Li, Xiaohong; Moresco, Eva Marie Y.; Beutler, Bruce (May 20, 2014). "Mutation of mouse Samd4 causes leanness, myopathy, uncoupled mitochondrial respiration, and dysregulated mTORC1 signaling". Proceedings of the National Academy of Sciences of the United States of America. 111 (20): 7367–7372. Bibcode:2014PNAS..111.7367C. doi: 10.1073/pnas.1406511111 . ISSN   1091-6490. PMC   4034201 . PMID   24799716.
  104. 1 2 Zhang, Zhao; Gallagher, Thomas; Scherer, Philipp E.; Beutler, Bruce (May 26, 2020). "Tissue-specific disruption of Kbtbd2 uncovers adipocyte-intrinsic and -extrinsic features of the teeny lipodystrophy syndrome". Proceedings of the National Academy of Sciences of the United States of America. 117 (21): 11829–11835. Bibcode:2020PNAS..11711829Z. doi: 10.1073/pnas.2000118117 . ISSN   1091-6490. PMC   7260979 . PMID   32381739.
  105. 1 2 Zhang, Zhao; Xun, Yu; Rong, Shunxing; Yan, Lijuan; SoRelle, Jeffrey A.; Li, Xiaohong; Tang, Miao; Keller, Katie; Ludwig, Sara; Moresco, Eva Marie Y.; Beutler, Bruce (July 16, 2022). "Loss of immunity-related GTPase GM4951 leads to nonalcoholic fatty liver disease without obesity". Nature Communications. 13 (1): 4136. Bibcode:2022NatCo..13.4136Z. doi:10.1038/s41467-022-31812-4. ISSN   2041-1723. PMC   9288484 . PMID   35842425.
  106. Smyth, Ian; Du, Xin; Taylor, Martin S.; Justice, Monica J.; Beutler, Bruce; Jackson, Ian J. (September 14, 2004). "The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis". Proceedings of the National Academy of Sciences of the United States of America. 101 (37): 13560–13565. Bibcode:2004PNAS..10113560S. doi: 10.1073/pnas.0402760101 . ISSN   0027-8424. PMC   518794 . PMID   15345741.
  107. Al-Fadhli, Fatima M.; Afqi, Manal; Sairafi, Mona Hamza; Almuntashri, Makki; Alharby, Essa; Alharbi, Ghadeer; Abdud Samad, Firoz; Hashmi, Jamil Amjad; Zaytuni, Dimah; Bahashwan, Ahmed A.; Choi, Jin Huk; Peake, Roy W. A.; Beutler, Bruce; Almontashiri, Naif A. M. (May 2021). "Biallelic loss of function variant in the unfolded protein response gene PDIA6 is associated with asphyxiating thoracic dystrophy and neonatal-onset diabetes". Clinical Genetics. 99 (5): 694–703. doi:10.1111/cge.13930. ISSN   1399-0004. PMID   33495992. S2CID   231710148.
  108. Israel, Laura; Wang, Ying; Bulek, Katarzyna; Della Mina, Erika; Zhang, Zhao; Pedergnana, Vincent; Chrabieh, Maya; Lemmens, Nicole A.; Sancho-Shimizu, Vanessa; Descatoire, Marc; Lasseau, Théo; Israelsson, Elisabeth; Lorenzo, Lazaro; Yun, Ling; Belkadi, Aziz (February 23, 2017). "Human Adaptive Immunity Rescues an Inborn Error of Innate Immunity". Cell. 168 (5): 789–800.e10. doi:10.1016/j.cell.2017.01.039. ISSN   1097-4172. PMC   5328639 . PMID   28235196.
  109. Melis, Maria Antonietta; Cau, Milena; Congiu, Rita; Sole, Gabriella; Barella, Susanna; Cao, Antonio; Westerman, Mark; Cazzola, Mario; Galanello, Renzo (October 2008). "A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that suppresses hepcidin production, in familial iron deficiency anemia refractory to oral iron". Haematologica. 93 (10): 1473–1479. doi: 10.3324/haematol.13342 . ISSN   1592-8721. PMID   18603562. S2CID   23364362.
  110. 1 2 El Hayek, Lauretta; Tuncay, Islam Oguz; Nijem, Nadine; Russell, Jamie; Ludwig, Sara; Kaur, Kiran; Li, Xiaohong; Anderton, Priscilla; Tang, Miao; Gerard, Amanda; Heinze, Anja; Zacher, Pia; Alsaif, Hessa S.; Rad, Aboulfazl; Hassanpour, Kazem (December 22, 2020). "KDM5A mutations identified in autism spectrum disorder using forward genetics". eLife. 9: e56883. doi: 10.7554/eLife.56883 . ISSN   2050-084X. PMC   7755391 . PMID   33350388.
  111. 1 2 Rios, Jonathan J.; Denton, Kristin; Yu, Hao; Manickam, Kandamurugu; Garner, Shannon; Russell, Jamie; Ludwig, Sara; Rosenfeld, Jill A.; Liu, Pengfei; Munch, Jake; Sucato, Daniel J.; Beutler, Bruce; Wise, Carol A. (June 1, 2021). "Saturation mutagenesis defines novel mouse models of severe spine deformity". Disease Models & Mechanisms. 14 (6): dmm048901. doi:10.1242/dmm.048901. ISSN   1754-8411. PMC   8246263 . PMID   34142127.
  112. 1 2 Rios, Jonathan J.; Denton, Kristin; Russell, Jamie; Kozlitina, Julia; Ferreira, Carlos R.; Lewanda, Amy F.; Mayfield, Joshua E.; Moresco, Eva; Ludwig, Sara; Tang, Miao; Li, Xiaohong; Lyon, Stephen; Khanshour, Anas; Paria, Nandina; Khalid, Aysha (August 2021). "Germline Saturation Mutagenesis Induces Skeletal Phenotypes in Mice". Journal of Bone and Mineral Research. 36 (8): 1548–1565. doi:10.1002/jbmr.4323. ISSN   1523-4681. PMC   8862308 . PMID   33905568.
  113. Andrews, T. D.; Whittle, B.; Field, M. A.; Balakishnan, B.; Zhang, Y.; Shao, Y.; Cho, V.; Kirk, M.; Singh, M.; Xia, Y.; Hager, J.; Winslade, S.; Sjollema, G.; Beutler, B.; Enders, A. (May 2012). "Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models". Open Biology. 2 (5): 120061. doi:10.1098/rsob.120061. ISSN   2046-2441. PMC   3376740 . PMID   22724066.
  114. Bull, Katherine R.; Rimmer, Andrew J.; Siggs, Owen M.; Miosge, Lisa A.; Roots, Carla M.; Enders, Anselm; Bertram, Edward M.; Crockford, Tanya L.; Whittle, Belinda; Potter, Paul K.; Simon, Michelle M.; Mallon, Ann-Marie; Brown, Steve D. M.; Beutler, Bruce; Goodnow, Christopher C. (2013). "Unlocking the bottleneck in forward genetics using whole-genome sequencing and identity by descent to isolate causative mutations". PLOS Genetics. 9 (1): e1003219. doi: 10.1371/journal.pgen.1003219 . ISSN   1553-7404. PMC   3561070 . PMID   23382690.
  115. Xia, Yu; Won, Sungyong; Du, Xin; Lin, Pei; Ross, Charles; La Vine, Diantha; Wiltshire, Sean; Leiva, Gabriel; Vidal, Silvia M.; Whittle, Belinda; Goodnow, Christopher C.; Koziol, James; Moresco, Eva Marie Y.; Beutler, Bruce (December 2010). "Bulk segregation mapping of mutations in closely related strains of mice". Genetics. 186 (4): 1139–1146. doi:10.1534/genetics.110.121160. ISSN   1943-2631. PMC   2998299 . PMID   20923982.
  116. 1 2 Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Lyon, Stephen; Pratt, David; Hildebrand, Sara; Choi, Jin Huk; Zhang, Zhao; Zeng, Ming; Wang, Kuan-wen; Turer, Emre; Chen, Zhe; Zhang, Duanwu; Yue, Tao; Wang, Ying (February 3, 2015). "Real-time resolution of point mutations that cause phenovariance in mice". Proceedings of the National Academy of Sciences of the United States of America. 112 (5): E440–449. Bibcode:2015PNAS..112E.440W. doi: 10.1073/pnas.1423216112 . ISSN   1091-6490. PMC   4321302 . PMID   25605905.
  117. Wang, Tao; Bu, Chun Hui; Hildebrand, Sara; Jia, Gaoxiang; Siggs, Owen M.; Lyon, Stephen; Pratt, David; Scott, Lindsay; Russell, Jamie; Ludwig, Sara; Murray, Anne R.; Moresco, Eva Marie Y.; Beutler, Bruce (January 30, 2018). "Probability of phenotypically detectable protein damage by ENU-induced mutations in the Mutagenetix database". Nature Communications. 9 (1): 441. Bibcode:2018NatCo...9..441W. doi:10.1038/s41467-017-02806-4. ISSN   2041-1723. PMC   5789985 . PMID   29382827.
  118. 1 2 Xu, Darui; Lyon, Stephen; Bu, Chun Hui; Hildebrand, Sara; Choi, Jin Huk; Zhong, Xue; Liu, Aijie; Turer, Emre E.; Zhang, Zhao; Russell, Jamie; Ludwig, Sara; Mahrt, Elena; Nair-Gill, Evan; Shi, Hexin; Wang, Ying (July 13, 2021). "Thousands of induced germline mutations affecting immune cells identified by automated meiotic mapping coupled with machine learning". Proceedings of the National Academy of Sciences of the United States of America. 118 (28): e2106786118. Bibcode:2021PNAS..11806786X. doi: 10.1073/pnas.2106786118 . ISSN   1091-6490. PMC   8285956 . PMID   34260399.
  119. Chen, Bo; Aredo, Bogale; Ding, Yi; Zhong, Xin; Zhu, Yuanfei; Zhao, Cynthia X.; Kumar, Ashwani; Xing, Chao; Gautron, Laurent; Lyon, Stephen; Russell, Jamie; Li, Xiaohong; Tang, Miao; Anderton, Priscilla; Ludwig, Sara (June 9, 2020). "Forward genetic analysis using OCT screening identifies Sfxn3 mutations leading to progressive outer retinal degeneration in mice". Proceedings of the National Academy of Sciences of the United States of America. 117 (23): 12931–12942. Bibcode:2020PNAS..11712931C. doi: 10.1073/pnas.1921224117 . ISSN   1091-6490. PMC   7293615 . PMID   32457148.
  120. Wang, Yibing; Cao, Liqin; Lee, Chia-Ying; Matsuo, Tomohiko; Wu, Kejia; Asher, Greg; Tang, Lijun; Saitoh, Tsuyoshi; Russell, Jamie; Klewe-Nebenius, Daniela; Wang, Li; Soya, Shingo; Hasegawa, Emi; Chérasse, Yoan; Zhou, Jiamin (May 23, 2018). "Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors". Nature Communications. 9 (1): 2041. Bibcode:2018NatCo...9.2041W. doi:10.1038/s41467-018-04324-3. ISSN   2041-1723. PMC   5966455 . PMID   29795268.
  121. Morin, Matthew D.; Wang, Ying; Jones, Brian T.; Mifune, Yuto; Su, Lijing; Shi, Hexin; Moresco, Eva Marie Y.; Zhang, Hong; Beutler, Bruce; Boger, Dale L. (October 31, 2018). "Diprovocims: A New and Exceptionally Potent Class of Toll-like Receptor Agonists". Journal of the American Chemical Society. 140 (43): 14440–14454. doi:10.1021/jacs.8b09223. ISSN   1520-5126. PMC   6209530 . PMID   30272974.
  122. Morin, Matthew D.; Wang, Ying; Jones, Brian T.; Su, Lijing; Surakattula, Murali M. R. P.; Berger, Michael; Huang, Hua; Beutler, Elliot K.; Zhang, Hong; Beutler, Bruce; Boger, Dale L. (May 26, 2016). "Discovery and Structure-Activity Relationships of the Neoseptins: A New Class of Toll-like Receptor-4 (TLR4) Agonists". Journal of Medicinal Chemistry. 59 (10): 4812–4830. doi:10.1021/acs.jmedchem.6b00177. ISSN   1520-4804. PMC   4882283 . PMID   27050713.
  123. Wang, Ying; Su, Lijing; Morin, Matthew D.; Jones, Brian T.; Mifune, Yuto; Shi, Hexin; Wang, Kuan-Wen; Zhan, Xiaoming; Liu, Aijie; Wang, Jianhui; Li, Xiaohong; Tang, Miao; Ludwig, Sara; Hildebrand, Sara; Zhou, Kejin (September 11, 2018). "Adjuvant effect of the novel TLR1/TLR2 agonist Diprovocim synergizes with anti-PD-L1 to eliminate melanoma in mice". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): E8698–E8706. Bibcode:2018PNAS..115E8698W. doi: 10.1073/pnas.1809232115 . ISSN   1091-6490. PMC   6140543 . PMID   30150374.
  124. Wang, Ying; Su, Lijing; Morin, Matthew D.; Jones, Brian T.; Whitby, Landon R.; Surakattula, Murali M. R. P.; Huang, Hua; Shi, Hexin; Choi, Jin Huk; Wang, Kuan-wen; Moresco, Eva Marie Y.; Berger, Michael; Zhan, Xiaoming; Zhang, Hong; Boger, Dale L. (February 16, 2016). "TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS". Proceedings of the National Academy of Sciences of the United States of America. 113 (7): E884–893. Bibcode:2016PNAS..113E.884W. doi: 10.1073/pnas.1525639113 . ISSN   1091-6490. PMC   4763747 . PMID   26831104.
  125. Su, Lijing; Athamna, Muhammad; Wang, Ying; Wang, Junmei; Freudenberg, Marina; Yue, Tao; Wang, Jianhui; Moresco, Eva Marie Y.; He, Haoming; Zor, Tsaffrir; Beutler, Bruce (July 27, 2021). "Sulfatides are endogenous ligands for the TLR4-MD-2 complex". Proceedings of the National Academy of Sciences of the United States of America. 118 (30): e2105316118. Bibcode:2021PNAS..11805316S. doi: 10.1073/pnas.2105316118 . ISSN   1091-6490. PMC   8325290 . PMID   34290146.
  126. Su, Lijing; Wang, Ying; Wang, Junmei; Mifune, Yuto; Morin, Matthew D.; Jones, Brian T.; Moresco, Eva Marie Y.; Boger, Dale L.; Beutler, Bruce; Zhang, Hong (March 28, 2019). "Structural Basis of TLR2/TLR1 Activation by the Synthetic Agonist Diprovocim". Journal of Medicinal Chemistry. 62 (6): 2938–2949. doi:10.1021/acs.jmedchem.8b01583. ISSN   1520-4804. PMC   6537610 . PMID   30829478.
  127. Yang, Ming-Hsiu; Russell, Jamie L.; Mifune, Yuto; Wang, Ying; Shi, Hexin; Moresco, Eva Marie Y.; Siegwart, Daniel J.; Beutler, Bruce; Boger, Dale L. (July 14, 2022). "Next-Generation Diprovocims with Potent Human and Murine TLR1/TLR2 Agonist Activity That Activate the Innate and Adaptive Immune Response". Journal of Medicinal Chemistry. 65 (13): 9230–9252. doi:10.1021/acs.jmedchem.2c00419. ISSN   1520-4804. PMC   9283309 . PMID   35767437.
  128. "Bruce Beutler and Jules Hoffmann: 2007 Balzan Prize for Innate Immunity". Fondazione Internazionale Premio Balzan. Retrieved November 30, 2023.
  129. Eric (April 24, 2009). "TSRI's Beutler shares America's largest prize in medicine". Del Mar Times. Retrieved March 9, 2023.
  130. "2011 Life Science & Medicine". The Shaw Prize. Retrieved November 30, 2023.
  131. Kristoffer Furberg (March 20, 2015). "169 nye NTNU-doktorer hedret". Universitetsavisa (in Norwegian). Archived from the original on July 14, 2018. Retrieved March 25, 2015.
  132. "Umg, laurea honoris causa al Premio Nobel Bruce Alan Beutler". September 23, 2019.
  133. Beutler, Bruce (January 1, 2009). "Ernest Beutler (1928–2008)". Haematologica. 94 (1): 154–156. doi: 10.3324/haematol.13863 . ISSN   1592-8721. PMC   2625414 . PMID   19118377. S2CID   43531611.
  134. Beutler, E. (February 1959). "The hemolytic effect of primaquine and related compounds: a review". Blood. 14 (2): 103–139. doi: 10.1182/blood.V14.2.103.103 . ISSN   0006-4971. PMID   13618370.
  135. Beutler, Ernest (1971). Red Cell Metabolism: A Handbook of Biochemical Methods. New York: Grune and Stratton.
  136. Beutler E (2006). "Disorders of red cells resulting from enzyme abnormalitites". In Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Kaushansky K, Prchal JT (eds.). Williams Hematology. New York: McGraw-Hill. pp. 603–632.
  137. Beutler, E (February 1961). "Hematology: Iron Metabolism". Annual Review of Medicine. 12 (1): 195–210. doi:10.1146/annurev.me.12.020161.001211. ISSN   0066-4219.
  138. Beutler, Ernest (July 2006). "Lysosomal storage diseases: natural history and ethical and economic aspects". Molecular Genetics and Metabolism. 88 (3): 208–215. doi:10.1016/j.ymgme.2006.01.010. ISSN   1096-7192. PMID   16515872.
  139. Beutler, E.; Blume, K. G.; Bross, K. J.; Chillar, R. K.; Ellington, O. B.; Fahey, J. L.; Farbstein, M. J.; Schmidt, G. M.; Spruce, W. E.; Turner, M. A. (1979). "Bone marrow transplantation as the treatment of choice for "good risk" adult patients with acute leukemia". Transactions of the Association of American Physicians. 92: 189–195. ISSN   0066-9458. PMID   398617.
  140. Piro, L. D.; Carrera, C. J.; Carson, D. A.; Beutler, E. (April 19, 1990). "Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine". The New England Journal of Medicine. 322 (16): 1117–1121. doi: 10.1056/NEJM199004193221605 . ISSN   0028-4793. PMID   1969613.
  141. Beutler, E.; Yeh, M.; Fairbanks, V. F. (January 15, 1962). "The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker". Proceedings of the National Academy of Sciences of the United States of America. 48 (1): 9–16. Bibcode:1962PNAS...48....9B. doi: 10.1073/pnas.48.1.9 . ISSN   0027-8424. PMC   285481 . PMID   13868717.
  142. Beutler, Bruce; Beutler, Ernest (December 12, 2002). "Toll-like receptor 4 polymorphisms and atherogenesis". The New England Journal of Medicine. 347 (24): 1978–1980, author reply 1978–1980. doi:10.1056/NEJM200212123472416. ISSN   1533-4406. PMID   12479194.
  143. Beutler, E.; Gelbart, T.; Han, J. H.; Koziol, J. A.; Beutler, B. (January 1989). "Evolution of the genome and the genetic code: selection at the dinucleotide level by methylation and polyribonucleotide cleavage". Proceedings of the National Academy of Sciences of the United States of America. 86 (1): 192–196. Bibcode:1989PNAS...86..192B. doi: 10.1073/pnas.86.1.192 . ISSN   0027-8424. PMC   286430 . PMID   2463621.
  144. Truksa, Jaroslav; Gelbart, Terri; Peng, Hongfan; Beutler, Ernest; Beutler, Bruce; Lee, Pauline (November 2009). "Suppression of the hepcidin-encoding gene Hamp permits iron overload in mice lacking both hemojuvelin and matriptase-2/TMPRSS6". British Journal of Haematology. 147 (4): 571–581. doi: 10.1111/j.1365-2141.2009.07873.x . ISSN   1365-2141. PMID   19751239. S2CID   205266224.
  145. Du, Xin; She, Ellen; Gelbart, Terri; Truksa, Jaroslav; Lee, Pauline; Xia, Yu; Khovananth, Kevin; Mudd, Suzanne; Mann, Navjiwan; Moresco, Eva Marie Y.; Beutler, Ernest; Beutler, Bruce (May 23, 2008). "The serine protease TMPRSS6 is required to sense iron deficiency". Science. 320 (5879): 1088–1092. Bibcode:2008Sci...320.1088D. doi:10.1126/science.1157121. ISSN   1095-9203. PMC   2430097 . PMID   18451267.
  146. Wailoo, Keith. "Ernest Beutler QA - Hematology.org" . Retrieved March 9, 2023.
  147. Hildebrandt, Sabine; Kammertöns, Thomas; Lechner, Christian; Schmitt, Philipp; Schumann, Ralf R. (2019). "Dr. Käthe Beutler, 1896–1999". Medizinhistorisches Journal. 54 (4): 294–346. doi:10.25162/mhj-2019-0009. ISSN   0025-8431. S2CID   213008951.
  148. "HANS G. BEUTLER, 46, PHYSICIST, IS DEAD; Research Aide on the Chicago U. Faculty Was Spectroscopist". The New York Times. December 19, 1942. Retrieved March 9, 2023.
  149. "Lamplighter Has Ties to Nobel Prize Winner - People Newspapers". October 5, 2011. Retrieved November 30, 2023.
  150. "Bruce A Beutler". The Shaw Prize. Retrieved November 30, 2023.