Dorfopterus

Last updated

Dorfopterus
Temporal range: Emsian, 407.6–393.3  Ma
Dorfopterus angusticollis holotype drawing.png
Interpretive drawing of the holotype and only known specimen of Dorfopterus, including a close-up on the ornamentation of the fossil.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Chelicerata
Order: Eurypterida
Family: incertae sedis
Genus: Dorfopterus
Kjellesvig-Waering, 1955
Type species
Dorfopterus angusticollis
Kjellesvig-Waering, 1955

Dorfopterus is a genus of eurypterid, a group of extinct aquatic arthropods. Only one fossil of the single and type species, D. angusticollis, has been discovered in deposits of the Early Devonian period (Emsian stage) in the Beartooth Butte Formation in Wyoming, in the United States. The first half of the name of the genus honors the discoverer of this formation, Erling Dorf, while the second half consists in the Ancient Greek word πτερόν (pteron), meaning "wing". The species name angusticollis is composed by the Latin words angustus ("narrow") and collum ("neck").

Contents

The only known specimen of Dorfopterus consists of an incomplete uncrushed telson (the posteriormost division of the body), which was long, narrow, styliform and with a central carina ("keel"). It had a special ornamentation consisting of rib-like curved lines on each side of the telson with reticulated (net-like) patterns between them. This ornamentation was unique, and was not known to have occurred in any other eurypterid at the time of the specimen's discovery.

Originally described as part of Stylonuridae by the American paleontologist Erik Norman Kjellesvig-Waering in 1955, the strange morphology and the little known fossil material of Dorfopterus have made the classification of this genus problematic. Currently, it is considered as incertae sedis (a taxon with unclear relationships) within Eurypterida, although Dorfopterus being a eurypterid at all has also been questioned. The locality in which Dorfopterus was found, the Beartooth Butte Formation, is home to fossils of many fish, plants and a few other eurypterids. The genus is believed to have lived in an estuarine inland channel.

Description

Dorfopterus was originally described as a stylonurid eurypterid of medium size. [1] Genera currently classified as part of Stylonuridae had lengths ranging from 10 centimetres (3.9 inches) [2] to 1.15 metres (3 feet 9 inches), [3] the smallest of them being Ctenopterus cestrotus [2] and the biggest being Pagea plotnicki . [3]

Dorfopterus is a poorly known eurypterid that is only known from one single specimen. It has been interpreted as representing a dorsal impression of its telson (the posteriormost division of its body). The telson on this specimen is uncrushed, although its base and distal part (its end) are not preserved. The preserved fragment is 12.6 cm (5.0 in) long, the complete telson potentially having had a length of 18 cm (7.1 in). It had its greatest width, 1.3 cm (0.51 in), on the base, while in the middle, the telson was 1.1 cm (0.43 in) wide. [4]

The telson of Dorfopterus was long and very narrow, with a spike-like shape, [1] styliform [5] and slightly carinated (with a not very pronounced "keel", ridge). This keel spread over the entire length of the central part of the telson. The telson was thicker at the carinated part, becoming less thick at its lateral margins (its sides). It was bordered by a flattened rim, which was obliquely striated and had traces of pointed scales. The ornamentation of the telson was highly distinctive, forming a series of raised and backwardly curved rib-like lines evenly spaced from one another on each lateral margin of the telson. As the lines got closer to its distal part, they became more strongly curved. Between each of these rib-like marks was a reticulated (net-like) pattern consisting of very fine, also raised and not as prominent lines. [6]

History of research

USA Wyoming relief location map.svg
Red pog.svg
Beartooth Butte Formation
Ubication of the section of the Beartooth Butte Formation where the only known specimen of Dorfopterus has been discovered in Wyoming, in the United States.

Dorfopterus' only known specimen, its holotype, was found on Lower Devonian deposits on the Beartooth Butte Formation on Wyoming, in the United States. Originally, the fossil was housed at the former paleontological museum of the Princeton University at New Jersey. [4] In 1988, this university was reorganized, and many of its eurypterid specimens, including that of Dorfopterus, were donated to the Peabody Museum of Natural History at Connecticut. [7]

The specimen of Dorfopterus consists of a dorsal uncrushed impression of most of a telson with a peculiar ornamentation. It was loaned by the American Princeton University paleontology professor Benjamin Franklin Howell to the American paleontologist Erik Norman Kjellesvig-Waering, [4] who found this fossil unique enough as to have its own genus. [6] Despite the little material of which it consisted, he argued that the telson was one of the most diagnostic parts of eurypterid morphology [1] and considered that comparison with other eurypterids was "superfluous" as the length of the telson and its ornamentation were sufficient for identification from other genera. [4] Thus, in 1955, he named the new genus and species Dorfopterus angusticollis based on this fossil. The first part of the generic name, Dorfopterus, honors the American geologist and Princeton University professor Erling Dorf, who discovered the Beartooth Butte Formation on 1934. [6] The second part consists on the Ancient Greek suffix πτερόν (pteron, "wing"), which has been widely used for eurypterid genera. [8] The meaning of its specific name, angusticollis, was not given by Kjellesvig-Waering. [6] However, an American biologist who also used this name in 1995 for a new living species of the weevil genus Lonchophorus specified that it is composed by the Latin words angustus , meaning "narrow", and collum , meaning "neck". [9]

Originally, Kjellesvig-Waering placed Dorfopterus in the family Stylonuridae. [1] He would reaffirm this in 1966 during a study in which he revised the superfamily Stylonuracea (now Stylonuroidea), albeit only tentatively. [10] During this study, Kjellesvig-Waering said that new specimens found by the American paleontologists Robert Howland Denison and Eugene Stanley Richardson, Jr. showed that Dorfopterus was a gigantic eurypterid whose reticulated patterns on the telson repeated on its opisthosomal (of the opisthosoma, its abdomen) tergites (the dorsal halves of the segments eurypterid abdomens are divided in). No year of discovery of these specimens or further explanation about them was given, [5] and later studies never mentioned them. [7] [11] The position of Dorfopterus in Stylonuridae would not be accepted by future researchers, who would first refer Dorfopterus to another eurypterid family called Parastylonuridae [12] and later classify it as an uncertain animal with an unknown position within Eurypterida. [13] [14] Some researchers have even doubted Dorfopterus being a eurypterid at all. [15] [16]

Classification

Comparison of the telsons of the species of Parastylonurus (P. ornatus on the left, P. hendersoni on the right) in which it is known. The structure of the telson of this genus has been compared with the telson of Dorfopterus. Parastylonurus species telson.png
Comparison of the telsons of the species of Parastylonurus (P. ornatus on the left, P. hendersoni on the right) in which it is known. The structure of the telson of this genus has been compared with the telson of Dorfopterus.
A specimen of Strobilopterus proteus and its counterpart. It has been suggested that Dorfopterus represents a telson of another species of this genus, S. princetonii. Strobilopterus fossils.jpg
A specimen of Strobilopterus proteus and its counterpart. It has been suggested that Dorfopterus represents a telson of another species of this genus, S. princetonii.

Dorfopterus is currently classified as an incertae sedis (that is, a taxon with unclear relationships) genus within the order Eurypterida. It includes one single species, Dorfopterus angusticollis. [14] Originally, Dorfopterus was classified as part of Stylonuridae. [1] At the time, this family consisted of the genera Brachyopterus , Campylocephalus , Ctenopterus, Drepanopterus , Melbournopterus , Stylonurus and Tarsopterella . [17] The family has since been revised, with new genera having been assigned to it, other genera having been moved to other clades (taxonomic groups) [18] and some genera having even been completely removed from the order Eurypterida. [19] Dorfopterus would not be an exception to these changes; having only been assigned to Stylonuridae due to its long and narrow telson (even though no member of this family or of Eurypterida as a whole was known at the time to have had an ornamentation similar to Dorfopterus as Kjellesvig-Waering admitted), [1] the genus' classification within this family would be rendered as tentative in 1966 by Kjellesvig-Waering himself, [10] although it would be continued by the Norwegian paleontologist Leif Størmer during his 1974 revision of Eurypterida. [20]

In 1979, the British geologist Charles D. Waterston erected a new eurypterid family, Parastylonuridae, and included the genera Hardieopterus , Parastylonurus and, doubtfully, Dorfopterus and Lamontopterus . [12] This family differed from the others by a series of morphological characteristics that included a carinated (or "crested", as he defined it) telson and a granulate (with granules), pustular (with pustules) or squamate (with scales) ornamentation. [21] Waterston compared the rib-like ornamentation and carina ("keel") of Dorfopterus with the structure of the telson of Parastylonurus and assigned the genus to this new family. [12] Waterston's classification of Dorfopterus was not retained by later researchers either, with the American professor and paleobiologist Roy E. Plotnick classifying Dorfopterus as incertae sedis within Eurypterida in 1983. [22] The American paleontologist Victor P. Tollerton, Jr. did the same in 1989 after considering Dorfopterus as too fragmentary for inclusion into a specific eurypterid family, [13] and so did the Norwegian paleontologist Odd Erik Tetlie in an unpublished PhD thesis in 2004 [23] despite having previously stated in the same paper that Dorfopterus could be provisionally kept in Parastylonuridae for the time being due to its similarities with Parastylonurus. [24] These similarities would also lead Tetlie to suggest that Dorfopterus and Parastylonurus could be synonymous genera, although he did not act upon this possibility. [25]

In 2007, Tetlie proposed that the fossil of Dorfopterus could represent the telson of Strobilopterus princetonii , then unknown in the latter except for a juvenile specimen in which it was poorly and fragmentarily preserved. [15] These two eurypterids were found in the same locality, the Beartooth Butte Formation. [7] He had already suggested this back in 2004, in his unpublished thesis. [24] To determine whether this was the case or not, he studied the only known specimen of Dorfopterus through a scanning electron microscope (SEM) and an energy dispersive X-ray analysis (EDAX). This way, Tetlie was able to confirm that it was not some other organism such as a plant or a vertebrate animal that had been erroneously labelled as a eurypterid, but he did not manage to reliably ensure the classification of Dorfopterus within Eurypterida. He thus only tentatively, and not formally, synonymized D. angusticollis with S. princetonii due to the lack of information regarding the telson of the latter. [15] However, in 2013, the American and British palaeontologists James C. Lamsdell and Paul Antony Selden doubted this conclusion, noting that the preservation style of the specimen of Dorfopterus was different from that of the other arthropods discovered in the same locality and that its morphology did not bear close resemblance to any other eurypterid species, again questioning Dorfopterus' assignation within Eurypterida. [16]

Due to the scarce known fossil material of the genus and its uncertain relation with and within Eurypterida, Dorfopterus has not usually been included in phylogenetic (of phylogenetics, a science branch studying organisms and their evolutionary history) analyses and cladograms. [11] An exception to this was made in 1983, when Plotnick included Dorfopterus on a cladogram in a thesis. The cladogram below follows Plotnick's thesis, which has been simplified to only include major eurypterid clades and incertae sedis genera not pertaining to any of them. The position of the genus on it holds no informative value regarding Dorfopterus though, as it was placed together with the rest of the genera Plotnick considered as incertae sedis at the top of the cladogram, without including it in any specific eurypterid clade. [26] Furthermore, the internal classification and phylogenetics of eurypterids have been substantially revised since 1983, making Plotnick's cladogram greatly misaligned from current knowledge. [18] [27]

Eurypterida

Paleoecology

Specimen of Cosmaspis transversa, an extinct species of fish found at the Beartooth Butte Formation. Fossil fish are highly abundant in this formation. Cosmaspis transversa (Beartooth Butte Formation, Lower Devonian; Cottonwood Canyon, east of Lovell, Wyoming, USA) 3 (33904457790).jpg
Specimen of Cosmaspis transversa , an extinct species of fish found at the Beartooth Butte Formation. Fossil fish are highly abundant in this formation.

The only known specimen of Dorfopterus was discovered on Early Devonian deposits at the Beartooth Butte Formation. The fossil in which it was preserved is a dolomitic (with dolomite) limestone [4] mixed with clay minerals. Fossil fish recovered from the same locality were mostly preserved in phosphate while the matrix (the fine-grained material embedding crystals or fossils in a sedimentary rock) of the fossils containing plants from the same place had a coat of small carbonaceous granules, confirming that Dorfopterus' fossil was not a misidentified plant or vertebrate. Nevertheless, the fossil in which Dorfopterus was preserved has a deep red color provoked by high iron deposits coming from iron oxides. This is opposed to the dark brown to black color of the fossils in which other eurypterids such as Strobilopterus princetonii have been found in the area, which again raises doubts regarding the classification of Dorfopterus as a eurypterid. [15]

The Beartooth Butte Formation is a geological formation extending from Wyoming to Montana (both in the United States) that is divided into several sections, some of which have great paleontological value. One of them is the section at the Beartooth Butte peak, discovered by Dorf in 1934 and aged as being Emsian (a stage of the Early Devonian). [28] [16] Dorf interpreted the lithology (the physical characteristics of the rocks) of the place as being proper of a non-marine, [16] red-colored infilled channel [29] in which rocks were deposited in quiet, shallow and estuarine (proper of an estuary, the final part of a river that joins the sea and of brackish water) conditions, [16] with the environment possibly having been an estuarine channel. [29] The paleoenviroment of the Beartooth Butte section had a high salinity, higher than the other sections of paleontological importance in the formation, that resembled that of marine environments. With there also being evidence for the presence of fresh water, it has been proposed that the habitat in which Dorfopterus lived was estuarine and far inland. [29]

Dorfopterus has been found together with many other organisms, predominantly heterostracan fish but also arthrodire, osteostracan and dipnoan (lungfish) fish. [29] There is also a fossil plant flora, [16] which Dorf interpreted as having come from terrestrial sources. [29] A small amount of eurypterids can also be found at the section, these being D. angusticollis, S. princetonii and Jaekelopterus howelli . [16] Near the Beartooth Butte section, at the known as Cottonwood Canyon section, fossil scorpions ( Acanthoscorpio mucronatus , Branchioscorpio richardsoni and Hydroscorpius denisoni ) have been discovered. Eurypterids are present in this section as well, even in more abundance than fish, although they remain largely unstudied. [29] [30]

See also

Related Research Articles

<span class="mw-page-title-main">Eurypterid</span> Order of arthropods (fossil)

Eurypterids, often informally called sea scorpions, are a group of extinct arthropods that form the order Eurypterida. The earliest known eurypterids date to the Darriwilian stage of the Ordovician period 467.3 million years ago. The group is likely to have appeared first either during the Early Ordovician or Late Cambrian period. With approximately 250 species, the Eurypterida is the most diverse Paleozoic chelicerate order. Following their appearance during the Ordovician, eurypterids became major components of marine faunas during the Silurian, from which the majority of eurypterid species have been described. The Silurian genus Eurypterus accounts for more than 90% of all known eurypterid specimens. Though the group continued to diversify during the subsequent Devonian period, the eurypterids were heavily affected by the Late Devonian extinction event. They declined in numbers and diversity until becoming extinct during the Permian–Triassic extinction event 251.9 million years ago.

<i>Pterygotus</i> Extinct genus of eurypterid

Pterygotus is a genus of giant predatory eurypterid, a group of extinct aquatic arthropods. Fossils of Pterygotus have been discovered in deposits ranging in age from Middle Silurian to Late Devonian, and have been referred to several different species. Fossils have been recovered from four continents; Australia, Europe, North America and South America, which indicates that Pterygotus might have had a nearly cosmopolitan (worldwide) distribution. The type species, P. anglicus, was described by Swiss naturalist Louis Agassiz in 1839, who gave it the name Pterygotus, meaning "winged one". Agassiz mistakenly believed the remains were of a giant fish; he would only realize the mistake five years later in 1844.

<i>Hibbertopterus</i> Extinct genus of arthropods

Hibbertopterus is a genus of eurypterid, a group of extinct aquatic arthropods. Fossils of Hibbertopterus have been discovered in deposits ranging from the Devonian period in Belgium, Scotland and the United States to the Carboniferous period in Scotland, Ireland, the Czech Republic and South Africa. The type species, H. scouleri, was first named as a species of the significantly different Eurypterus by Samuel Hibbert in 1836. The generic name Hibbertopterus, coined more than a century later, combines his name and the Greek word πτερόν (pteron) meaning "wing".

<i>Carcinosoma</i> Extinct genus of arthropods

Carcinosoma is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Carcinosoma are restricted to deposits of late Silurian age. Classified as part of the family Carcinosomatidae, which the genus lends its name to, Carcinosoma contains seven species from North America and Great Britain.

<i>Hughmilleria</i> Genus of extinct arthropods

Hughmilleria is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Hughmilleria have been discovered in deposits of the Silurian age in China and the United States. Classified as part of the basal family Hughmilleriidae, the genus contains three species, H. shawangunk from the eastern United States, H. socialis from Pittsford, New York, and H. wangi from Hunan, China. The genus is named in honor of the Scottish geologist Hugh Miller.

<i>Jaekelopterus</i> Extinct Devonian genus of the Eurypterida (sea scorpions)

Jaekelopterus is a genus of predatory eurypterid, a group of extinct aquatic arthropods. Fossils of Jaekelopterus have been discovered in deposits of Early Devonian age, from the Pragian and Emsian stages. There are two known species: the type species J. rhenaniae from brackish to fresh water strata in the Rhineland, and J. howelli from estuarine strata in Wyoming. The generic name combines the name of German paleontologist Otto Jaekel, who described the type species, and the Greek word πτερόν (pteron) meaning "wing".

<i>Pittsfordipterus</i> Genus of arthropods (fossil)

Pittsfordipterus is a genus of eurypterid, an extinct group of aquatic arthropods. Pittsfordipterus is classified as part of the family Adelophthalmidae, the only clade in the derived ("advanced") Adelophthalmoidea superfamily of eurypterids. Fossils of the single and type species, P. phelpsae, have been discovered in deposits of Silurian age in Pittsford, New York state. The genus is named after Pittsford, where the two only known specimens have been found.

<i>Erettopterus</i> Extinct genus of arthropods

Erettopterus is a genus of large predatory eurypterid, an extinct group of aquatic arthropods. Fossils of Erettopterus have been discovered in deposits ranging from Early Silurian to the Early Devonian, and have been referred to several different species. Fossils have been recovered from two continents; Europe and North America. The genus name is composed by the Ancient Greek words ἐρέττω (eréttō), which means "rower", and πτερόν (pterón), which means "wing", and therefore, "rower wing".

<i>Parahughmilleria</i> Extinct genus of arthropods

Parahughmilleria is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Parahughmilleria have been discovered in deposits of the Devonian and Silurian age in the United States, Canada, Russia, Germany, Luxembourg and Great Britain, and have been referred to several different species. The first fossils of Parahughmilleria, discovered in the Shawangunk Mountains in 1907, were initially assigned to Eurypterus. It would not be until 54 years later when Parahughmilleria would be described.

<span class="mw-page-title-main">Pterygotidae</span> Extinct family of eurypterids

Pterygotidae is a family of eurypterids, an extinct group of aquatic arthropods. They were members of the superfamily Pterygotioidea. Pterygotids were the largest known arthropods to have ever lived with some members of the family, such as Jaekelopterus and Acutiramus, exceeding 2 metres (6.6 ft) in length. Their fossilized remains have been recovered in deposits ranging in age from 428 to 372 million years old.

<span class="mw-page-title-main">Carcinosomatidae</span> Extinct family of arthropods

Carcinosomatidae is a family of eurypterids, an extinct group of aquatic arthropods. They were members of the superfamily Carcinosomatoidea, also named after Carcinosoma. Fossils of carcinosomatids have been found in North America, Europe and Asia, the family possibly having achieved a worldwide distribution, and range in age from the Late Ordovician to the Early Devonian. They were among the most marine eurypterids, known almost entirely from marine environments.

<span class="mw-page-title-main">Pterygotioidea</span> Extinct superfamily of eurypterids

Pterygotioidea is a superfamily of eurypterids, an extinct group of aquatic arthropods. Pterygotioids were the most derived members of the infraorder Diploperculata and the sister group of the adelophthalmoid eurypterids. The group includes the basal and small hughmilleriids, the larger and specialized slimonids and the famous pterygotids which were equipped with robust and powerful cheliceral claws.

<span class="mw-page-title-main">Stylonuroidea</span> Extinct superfamily of arthropods

Stylonuroidea is an extinct superfamily of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". It is one of four superfamilies classified as part of the suborder Stylonurina.

<span class="mw-page-title-main">Parastylonuridae</span> Extinct family of arthropods

The Parastylonuridae are a family of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". The family is one of two families contained in the superfamily Stylonuroidea, which in turn is one of four superfamilies classified as part of the suborder Stylonurina.

<span class="mw-page-title-main">Adelophthalmidae</span> Family of eurypterids

Adelophthalmidae is a family of eurypterids, an extinct group of aquatic arthropods. Adelophthalmidae is the only family classified as part of the superfamily Adelophthalmoidea, which in turn is classified within the infraorder Diploperculata in the suborder Eurypterina.

<span class="mw-page-title-main">Mycteropoidea</span> Extinct superfamily of arthropods

Mycteropoidea is an extinct superfamily of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". It is one of four superfamilies classified as part of the suborder Stylonurina. Mycteropoids have been recovered from Europe, Russia, South America and South Africa. Mycteropoid specimens are often fragmentary, making it difficult to establish relationships between the included taxa. Only two mycteropoid taxa are known from reasonable complete remains, Hibbertopterus scouleri and H. wittebergensis.

<i>Eysyslopterus</i> Extinct genus of arthropods

Eysyslopterus is a genus of eurypterid, an extinct group of aquatic arthropods. Eysyslopterus is classified as part of the family Adelophthalmidae, the only clade within the derived ("advanced") Adelophthalmoidea superfamily of eurypterids. One fossil of the single and type species, E. patteni, has been discovered in deposits of the Late Silurian period in Saaremaa, Estonia. The genus is named after Eysysla, the Viking name for Saaremaa, and opterus, a traditional suffix for the eurypterid genera, meaning "wing". The species name honors William Patten, an American biologist and zoologist who discovered the only known fossil of Eysyslopterus.

<i>Ciurcopterus</i> Extinct genus of arthropods

Ciurcopterus is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Ciurcopterus have been discovered in deposits of Late Silurian age in North America. Classified as part of the family Pterygotidae, the genus contains two species, C. sarlei from Pittsford, New York and C. ventricosus from Kokomo, Indiana. The genus is named in honor of Samuel J. Ciurca, Jr., who has contributed significantly to eurypterid research by discovering a large amount of eurypterid specimens, including the four specimens used to describe Ciurcopterus itself.

<i>Borchgrevinkium</i> Extinct genus of arthropods

Borchgrevinkium is an extinct genus of chelicerate arthropod. A fossil of the single and type species, B. taimyrensis, has been discovered in deposits of the Early Devonian period in the Krasnoyarsk Krai, Siberia, Russia. The name of the genus honors Carsten Borchgrevink, an Anglo-Norwegian explorer who participated in many expeditions to Antarctica. Borchgrevinkium represents a poorly known genus whose affinities are uncertain.

<span class="mw-page-title-main">Timeline of eurypterid research</span>

This timeline of eurypterid research is a chronologically ordered list of important fossil discoveries, controversies of interpretation, and taxonomic revisions of eurypterids, a group of extinct aquatic arthropods closely related to modern arachnids and horseshoe crabs that lived during the Paleozoic Era.

References

Citations

Bibliography