The Glicko rating system and Glicko-2 rating system are methods of assessing a player's strength in zero-sum two-player games. The Glicko rating system was invented by Mark Glickman in 1995 as an improvement on the Elo rating system and initially intended for the primary use as a chess rating system. Glickman's principal contribution to measurement is "ratings reliability", called RD, for ratings deviation .
Mark Glickman created the Glicko rating system in 1995 as an improvement on the Elo rating system. [1]
Both the Glicko and Glicko-2 rating systems are under public domain and have been implemented on game servers online like Counter-Strike: Global Offensive, Team Fortress 2 , [2] Dota 2 , [3] Guild Wars 2 , [4] Splatoon 2 , [5] Online-go.com, [6] Lichess and chess.com. [7]
The Reliability Deviation (RD) measures the accuracy of a player's rating, where the RD is equal to one standard deviation. For example, a player with a rating of 1500 and an RD of 50 has a real strength between 1400 and 1600 (two standard deviations from 1500) with 95% confidence. Twice (exact: 1.96) the RD is added and subtracted from their rating to calculate this range. After a game, the amount the rating changes depends on the RD: the change is smaller when the player's RD is low (since their rating is already considered accurate), and also when their opponent's RD is high (since the opponent's true rating is not well known, so little information is being gained). The RD itself decreases after playing a game, but it will increase slowly over time of inactivity.
The Glicko-2 rating system improves upon the Glicko rating system and further introduces the rating volatility σ. [8] A very slightly modified version of the Glicko-2 rating system is implemented by the Australian Chess Federation. [9]
The new Ratings Deviation () is found using the old Ratings Deviation ():
where is the amount of time (rating periods) since the last competition and '350' is assumed to be the RD of an unrated player. If several games have occurred within one rating period, the method treats them as having happened simultaneously. The rating period may be as long as several months or as short as a few minutes, according to how frequently games are arranged. The constant is based on the uncertainty of a player's skill over a certain amount of time. It can be derived from thorough data analysis, or estimated by considering the length of time that would have to pass before a player's rating deviation would grow to that of an unrated player. If it is assumed that it would take 100 rating periods for a player's rating deviation to return to an initial uncertainty of 350, and a typical player has a rating deviation of 50 then the constant can be found by solving for . [10]
Or
The new ratings, after a series of m games, are determined by the following equation:
where:
represents the ratings of the individual opponents.
represents the rating deviations of the individual opponents.
represents the outcome of the individual games. A win is 1, a draw is , and a loss is 0.
The function of the prior RD calculation was to increase the RD appropriately to account for the increasing uncertainty in a player's skill level during a period of non-observation by the model. Now, the RD is updated (decreased) after the series of games:
Glicko-2 works in a similar way to the original Glicko algorithm, with the addition of a rating volatility which measures the degree of expected fluctuation in a player’s rating, based on how erratic the player's performances are. For instance, a player's rating volatility would be low when they performed at a consistent level, and would increase if they had exceptionally strong results after that period of consistency. A simplified explanation of the Glicko-2 algorithm is presented below: [8]
Across one rating period, a player with a current rating and ratings deviation plays against opponents, with ratings and RDs , resulting in scores . We first need to compute the ancillary quantities and :
where
We then need to choose a small constant which constrains the volatility over time, for instance (smaller values of prevent dramatic rating changes after upset results). Then, for
we need to find the value which satisfies . An efficient way of solving this would be to use the Illinois algorithm, a modified version of the regula falsi procedure (see Regula falsi § The Illinois algorithm for details on how this would be done). Once this iterative procedure is complete, we set the new rating volatility as
We then get the new RD
and new rating
These ratings and RDs are on a different scale than in the original Glicko algorithm, and would need to be converted to properly compare the two. [8]
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event happening. Effect sizes are a complement tool for statistical hypothesis testing, and play an important role in power analyses to assess the sample size required for new experiments. Effect size are fundamental in meta-analyses which aim to provide the combined effect size based on data from multiple studies. The cluster of data-analysis methods concerning effect sizes is referred to as estimation statistics.
The Gram–Charlier A series, and the Edgeworth series are series that approximate a probability distribution in terms of its cumulants. The series are the same; but, the arrangement of terms differ. The key idea of these expansions is to write the characteristic function of the distribution whose probability density function f is to be approximated in terms of the characteristic function of a distribution with known and suitable properties, and to recover f through the inverse Fourier transform.
A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.
In statistics, a multimodaldistribution is a probability distribution with more than one mode. These appear as distinct peaks in the probability density function, as shown in Figures 1 and 2. Categorical, continuous, and discrete data can all form multimodal distributions. Among univariate analyses, multimodal distributions are commonly bimodal.
In quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential energy term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime.
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges.
A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.
In probability theory, calculation of the sum of normally distributed random variables is an instance of the arithmetic of random variables.
Scalar–tensor–vector gravity (STVG) is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG.
Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.
In probability theory and statistics, the skew normal distribution is a continuous probability distribution that generalises the normal distribution to allow for non-zero skewness.
f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.
In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.
In probability theory, the rectified Gaussian distribution is a modification of the Gaussian distribution when its negative elements are reset to 0. It is essentially a mixture of a discrete distribution and a continuous distribution as a result of censoring.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.