This is a list of terms used in computer chess.
Minmax is a decision rule used in artificial intelligence, decision theory, game theory, statistics, and philosophy for minimizing the possible loss for a worst case scenario. When dealing with gains, it is referred to as "maximin" – to maximize the minimum gain. Originally formulated for several-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty.
Computer chess includes both hardware and software capable of playing chess. Computer chess provides opportunities for players to practice even in the absence of human opponents, and also provides opportunities for analysis, entertainment and training. Computer chess applications that play at the level of a chess master or higher are available on hardware from supercomputers to smart phones. Standalone chess-playing machines are also available. Stockfish, GNU Chess, Fruit, and other free open source applications are available for various platforms.
Alpha–beta pruning is a search algorithm that seeks to decrease the number of nodes that are evaluated by the minimax algorithm in its search tree. It is an adversarial search algorithm used commonly for machine playing of two-player combinatorial games. It stops evaluating a move when at least one possibility has been found that proves the move to be worse than a previously examined move. Such moves need not be evaluated further. When applied to a standard minimax tree, it returns the same move as minimax would, but prunes away branches that cannot possibly influence the final decision.
In competitive two-player games, the killer heuristic is a move-ordering method based on the observation that a strong move or small set of such moves in a particular position may be equally strong in similar positions at the same move (ply) in the game tree. Retaining such moves obviates the effort of rediscovering them in sibling nodes.
In computer chess programs, the null-move heuristic is a heuristic technique used to enhance the speed of the alpha–beta pruning algorithm.
In computer science and artificial intelligence, combinatorial search studies search algorithms for solving instances of problems that are believed to be hard in general, by efficiently exploring the usually large solution space of these instances. Combinatorial search algorithms achieve this efficiency by reducing the effective size of the search space or employing heuristics. Some algorithms are guaranteed to find the optimal solution, while others may only return the best solution found in the part of the state space that was explored.
A transposition table is a cache of previously seen positions, and associated evaluations, in a game tree generated by a computer game playing program. If a position recurs via a different sequence of moves, the value of the position is retrieved from the table, avoiding re-searching the game tree below that position. Transposition tables are primarily useful in perfect-information games. The usage of transposition tables is essentially memoization applied to the tree search and is a form of dynamic programming.
The horizon effect, also known as the horizon problem, is a problem in artificial intelligence whereby, in many games, the number of possible states or positions is immense and computers can only feasibly search a small portion of them, typically a few plies down the game tree. Thus, for a computer searching only five plies, there is a possibility that it will make a detrimental move, but the effect is not visible because the computer does not search to the depth of the error.
In the context of Combinatorial game theory, which typically studies sequential games with perfect information, a game tree is a graph representing all possible game states within such a game. Such games include well-known ones such as chess, checkers, Go, and tic-tac-toe. This can be used to measure the complexity of a game, as it represents all the possible ways a game can pan out. Due to the large game trees of complex games such as chess, algorithms that are designed to play this class of games will use partial game trees, which makes computation feasible on modern computers. Various methods exist to solve game trees. If a complete game tree can be generated, a deterministic algorithm, such as backward induction or retrograde analysis can be used. Randomized algorithms and minimax algorithms such as MCTS can be used in cases where a complete game tree is not feasible.
The expectiminimax algorithm is a variation of the minimax algorithm, for use in artificial intelligence systems that play two-player zero-sum games, such as backgammon, in which the outcome depends on a combination of the player's skill and chance elements such as dice rolls. In addition to "min" and "max" nodes of the traditional minimax tree, this variant has "chance" nodes, which take the expected value of a random event occurring. In game theory terms, an expectiminimax tree is the game tree of an extensive-form game of perfect, but incomplete information.
Negamax search is a variant form of minimax search that relies on the zero-sum property of a two-player game.
Principal variation search is a negamax algorithm that can be faster than alpha–beta pruning. Like alpha–beta pruning, NegaScout is a directional search algorithm for computing the minimax value of a node in a tree. It dominates alpha–beta pruning in the sense that it will never examine a node that can be pruned by alpha–beta; however, it relies on accurate node ordering to capitalize on this advantage.
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. The efficacy of this paradigm depends on a good initial guess, and the supposition that the final minimax value lies in a narrow window around the guess (which becomes an upper/lower bound for the search from root). The memory structure is used to save an initial guess determined elsewhere.
In game theory, a null move or pass is a decision by a player to not make a move when it is that player's turn to move. Even though null moves are against the rules of many games, they are often useful to consider when analyzing these games. Examples of this include the analysis of zugzwang, and the null-move heuristic in game tree analysis.
Quiescence search is an algorithm typically used to extend search at unstable nodes in minimax game trees in game-playing computer programs. It is an extension of the evaluation function to defer evaluation until the position is stable enough to be evaluated statically, that is, without considering the history of the position or future moves from the position. It mitigates the effect of the horizon problem faced by AI engines for various games like chess and Go.
Alexander L'vovich Brudno was a Russian computer scientist, best known for fully describing the alpha-beta pruning algorithm. From 1991 until his death he lived in Israel.
SSS* is a search algorithm, introduced by George Stockman in 1979, that conducts a state space search traversing a game tree in a best-first fashion similar to that of the A* search algorithm.
A variation can refer to a specific sequence of successive moves in a turn-based game, often used to specify a hypothetical future state of a game that is being played. Although the term is most commonly used in the context of Chess analysis, it has been applied to other games. It also is a useful term used when describing computer tree-search algorithms for playing games such as Go or Chess.
Computer Othello refers to computer architecture encompassing computer hardware and computer software capable of playing the game of Othello. It is also known as Reversi for Microsoft Windows and Classic Mac OS.
In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some kinds of decision processes, most notably those employed in software that plays board games. In that context MCTS is used to solve the game tree.