HIV vaccine

Last updated
Various approaches for HIV vaccine development Various approaches for HIV vaccine development.jpg
Various approaches for HIV vaccine development

An HIV vaccine can be either a preventive vaccine or a therapeutic vaccine, which means it can either protect individuals from being infected with HIV or treat HIV-infected individuals. And it can either induce an immune response against HIV (active vaccination approach) or consist of preformed antibodies against HIV (passive vaccination approach). [1]

Contents

There is currently no licensed HIV vaccine on the market, but multiple research projects are trying to find an effective vaccine. Evidence observed from humans shows that a vaccine may be possible: Some, but certainly not all, HIV-infected individuals naturally produce broadly neutralizing antibodies which keep the virus suppressed, and these people remain asymptomatic for decades. Potential broadly neutralizing antibodies have been cloned in the laboratory (monoclonal antibodies) and are being tested in passive vaccination clinical trials.

Many trials have shown no efficacy, but one HIV vaccine regimen, RV 144, has been shown to prevent HIV in some individuals in Thailand.

The urgency of the search for a vaccine against HIV stems from the AIDS-related death toll of over 35 million people since 1981. [2] In 2002, AIDS became the primary cause of death due to an infectious agent in Africa. [3]

Alternative medical treatments to a vaccine exist. For the treatment of HIV-infected individuals, highly active antiretroviral therapy (HAART) medication has been demonstrated to provide many benefits to HIV-infected individuals, including improved health, increased lifespan, control of viremia, and prevention of transmission to babies and partners. HAART must be taken lifelong without interruption to be effective, and cannot cure HIV. Options for the prevention of HIV infection in HIV-uninfected individuals include safer sex (for example condom use), antiretroviral strategies (pre-exposure prophylaxis [4] and post-exposure prophylaxis) and medical male circumcision. [5] Vaccination has proved a powerful public health tool in vanquishing other diseases, and an HIV vaccine is generally considered as the most likely, and perhaps the only way by which the HIV pandemic can be halted. However, HIV remains a challenging target for a vaccine.

Difficulties in development

In 1984, after the confirmation of the etiological agent of AIDS by scientists at the U.S. National Institutes of Health and the Pasteur Institute, the United States Health and Human Services Secretary Margaret Heckler declared that a vaccine would be available within two years. [6] However, the classical vaccination approach that is successful in the control of other viral diseases - priming the adaptive immunity to recognize the viral envelope proteins - did not work against HIV. Many factors make the development of an HIV vaccine different from other classic vaccines: [7]

HIV structure

HIV structure cycle zh HIV structure cycle zh.png
HIV structure cycle zh

The epitopes of the viral envelope are more variable than those of many other viruses. Furthermore, the functionally important epitopes of the gp120 protein are masked by glycosylation, trimerisation and receptor-induced conformational changes making it difficult to block with neutralizing antibodies.

The ineffectiveness of previously developed vaccines primarily stems from two related factors:

The difficulties in stimulating a reliable antibody response has led to the attempts to develop a vaccine that stimulates a response by cytotoxic T-lymphocytes. [8] [9]

Another response to the challenge has been to create a single peptide that contains the least variable components of all the known HIV strains. [10]

Animal model

2006-12-09 Chipanzees D Bruyere 2006-12-09 Chipanzees D Bruyere.JPG
2006-12-09 Chipanzees D Bruyere

The typical animal model for vaccine research is the monkey, often the macaque. Monkeys can be infected with SIV or the chimeric SHIV for research purposes. However, the well-proven route of trying to induce neutralizing antibodies by vaccination has stalled because of the great difficulty in stimulating antibodies that neutralise heterologous primary HIV isolates. [11] Some vaccines based on the virus envelope have protected chimpanzees or macaques from homologous virus challenge, [12] but in clinical trials, humans who were immunised with similar constructs became infected after later exposure to HIV-1. [13]

There are some differences between SIV and HIV that may introduce challenges in the use of an animal model. The animal model can be extremely useful but at times controversial. [14]

There is a new animal model strongly resembling that of HIV in humans. Generalized immune activation as a direct result of activated CD4+ T cell killing - performed in mice allows new ways of testing HIV behaviour. [15] [16]

NIAID-funded SIV research has shown that challenging monkeys with a cytomegalovirus (CMV)-based SIV vaccine results in containment of virus. Typically, virus replication and dissemination occurs within days after infection, whereas vaccine-induced T cell activation and recruitment to sites of viral replication take weeks. Researchers hypothesized that vaccines designed to maintain activated effector memory T cells might impair viral replication at its earliest stage.[ citation needed ]

Clinical trials

Several vaccine candidates are in varying phases of clinical trials.

Phase I

Most initial approaches have focused on the HIV envelope protein. At least thirteen different gp120 and gp160 envelope candidates have been evaluated, in the US predominantly through the AIDS Vaccine Evaluation Group. Most research focused on gp120 rather than gp41/gp160, as the latter is generally more difficult to produce and did not initially offer any clear advantage over gp120 forms. Overall, they have been safe and immunogenic in diverse populations, have induced neutralizing antibody in nearly 100% recipients, but rarely induced CD8+ cytotoxic T lymphocytes (CTL). Mammalian derived envelope preparations have been better inducers of neutralizing antibody than candidates produced in yeast and bacteria. Although the vaccination process involved many repeated "booster" injections, it was challenging to induce and maintain the high anti-gp120 antibody titers necessary to have any hope of neutralizing an HIV exposure.[ citation needed ]

The availability of several recombinant canarypox vectors has provided interesting results that may prove to be generalizable to other viral vectors. Increasing the complexity of the canarypox vectors by including more genes/epitopes has increased the percent of volunteers that have detectable CTL to a greater extent than did increase the dose of the viral vector. CTLs from volunteers were able to kill peripheral blood mononuclear cells infected with primary isolates of HIV, suggesting that induced CTLs could have biological significance. Besides, cells from at least some volunteers were able to kill cells infected with HIV from other clades, though the pattern of recognition was not uniform among volunteers. The canarypox vector is the first candidate HIV vaccine that has induced cross-clade functional CTL responses. The first phase I trial of the candidate vaccine in Africa was launched early in 1999 with Ugandan volunteers. The study determined the extent to which Ugandan volunteers have CTL that are active against the subtypes of HIV prevalent in Uganda, A and D. In 2015, a Phase I trial called HVTN 100, chaired by two South African researchers, tested the combination of a canarypox vector ALVAC and a gp120 protein adapted for the subtype C HIV common in sub-Saharan Africa, with the MF59 adjuvant. Those who received the vaccine regimen produced strong immune responses early on and the regimen was safe. [17]

Other strategies that have progressed to phase I trials in uninfected persons include peptides, lipopeptides, DNA, an attenuated Salmonella vector, p24, etc. Specifically, candidate vaccines that induce one or more of the following are being sought:

In 2011, researchers in National Biotech Centre in Madrid unveiled data from the Phase I clinical trial of their new vaccine, MVA-B. The vaccine induced an immunological response in 92% of the healthy subjects. [19]

In 2016, results were published of the first Phase I human clinical trial of a killed whole-HIV-1 vaccine, SAV001. HIV used in the vaccine was chemically and physically deadened through radiation. The trial, conducted in Canada in 2012, demonstrated a good safety profile and elicited antibodies to HIV-1. [20] According to Dr. Chil-Yong Kang of Western University's Schulich School of Medicine & Dentistry in Canada, the developer of this vaccine, antibodies against gp120 and p24 increased to 8-fold and 64-fold, respectively after vaccination. [21]

Phase II

Preventive HIV vaccines

Therapeutic HIV vaccines

Biosantech developed a therapeutic vaccine called Tat Oyi, which targets the tat protein of HIV. It was tested in France in a double-blind Phase I/II trial with 48 HIV-positive patients who had reached viral suppression on Highly Active Antiretroviral Therapy and then stopped antiretrovirals after getting the intradermal Tat Oyi vaccine. [28]

Phase III

Preventive HIV vaccines

There have been no passive preventive HIV vaccines to reach Phase III yet, but some active preventive HIV vaccine candidates have entered Phase III.

Therapeutic HIV vaccines

No therapeutic HIV vaccine candidates have reached phase 3 testing yet.

Economics

A July 2012 report of the HIV Vaccines & Microbicides Resource Tracking Working Group estimates that $845 million was invested in HIV vaccine research in 2011. [33]

Economic issues with developing an AIDS vaccine include the need for advance purchase commitment (or advance market commitments) because after an AIDS vaccine has been developed, governments and NGOs may be able to bid the price down to marginal cost. [34]

Classification of possible vaccines

Theoretically, any possible HIV vaccine must inhibit or stop the HIV virion replication cycle. [35] The targets of a vaccine could be the following stages of the HIV virion cycle:

Therefore, the following list comprises the current possible approaches for an HIV vaccine:

Filtering virions from blood (Stage I)

Approaches to catching the virion (Stage I-III, VI, VII)

Approaches to destroying or damaging the virion or its parts (Stage I-VII)

Here, “damage” means inhibiting or stopping the ability of virion to process any of the Phase II-VII. Here are the different classification of methods:

Blocking replication (Stage V)

Biological, chemical or physical approaches to inhibit the process of phases

Inhibiting the functionality of infected cells (Stage VI-VII)

Inhibiting the life functions of infected cells:

Future work

There have been reports that HIV patients coinfected with GB virus C (GBV-C), also called hepatitis G virus, can survive longer than those without GBV-C, but the patients may be different in other ways. GBV-C is potentially useful in the future development of an HIV vaccine. [40]

Live attenuated vaccines are highly successful against polio, rotavirus and measles, but have not been tested against HIV in humans. Reversion to live virus has been a theoretical safety concern that has to date prevented clinical development of a live attenuated HIV-1 vaccine. Scientists are researching novel strategies to develop a non-virulent live attenuated HIV-1 vaccine. For example, a genetically modified form of HIV has been created in which the virus's codons (a sequence of three nucleotides that form genetic code) are manipulated to rely on an unnatural amino acid for proper protein translation, which allows it to replicate. Because this amino acid is foreign to the human body, the virus cannot reproduce. [41]

See also

Related Research Articles

HIV Human retrovirus, cause of AIDS

The human immunodeficiency viruses (HIV) are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Without treatment, average survival time after infection with HIV is estimated to be 9 to 11 years, depending on the HIV subtype. In most cases, HIV is a sexually transmitted infection and occurs by contact with or transfer of blood, pre-ejaculate, semen, and vaginal fluids. Research has shown that HIV is untransmittable through condomless sexual intercourse if the HIV-positive partner has a consistently undetectable viral load. Non-sexual transmission can occur from an infected mother to her infant during pregnancy, during childbirth by exposure to her blood or vaginal fluid, and through breast milk. Within these bodily fluids, HIV is present as both free virus particles and virus within infected immune cells.

<i>Adenoviridae</i>

Adenoviruses are medium-sized, nonenveloped viruses with an icosahedral nucleocapsid containing a double stranded DNA genome. Their name derives from their initial isolation from human adenoids in 1953.

<i>Feline immunodeficiency virus</i>

Feline immunodeficiency virus (FIV) is a Lentivirus that affects cats worldwide, with 2.5% to 4.4% of felines being infected. FIV differs taxonomically from two other feline retroviruses, feline leukemia virus (FeLV) and feline foamy virus (FFV), and is more closely related to human immunodeficiency virus (HIV). Within FIV, five subtypes have been identified based on nucleotide sequence differences coding for the viral envelope (env) or polymerase (pol). FIV is the only non-primate lentivirus to cause an AIDS-like syndrome, but FIV is not typically fatal for cats, as they can live relatively healthily as carriers and transmitters of the disease for many years. A vaccine is available, although its efficacy remains uncertain. Cats will test positive for FIV antibodies after vaccination.

The genome and proteins of HIV have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.

Envelope glycoprotein GP120 Glycoprotein exposed on the surface of the HIV virus

Envelope glycoprotein GP120 is a glycoprotein exposed on the surface of the HIV envelope. It was discovered by Professors Tun-Hou Lee and Myron "Max" Essex of the Harvard School of Public Health in 1988. The 120 in its name comes from its molecular weight of 120 kDa. Gp120 is essential for virus entry into cells as it plays a vital role in attachment to specific cell surface receptors. These receptors are DC-SIGN, Heparan Sulfate Proteoglycan and a specific interaction with the CD4 receptor, particularly on helper T-cells. Binding to CD4 induces the start of a cascade of conformational changes in gp120 and gp41 that lead to the fusion of the viral membrane with the host cell membrane. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds.

HIV superinfection is a condition in which a person with an established human immunodeficiency virus infection acquires a second strain of HIV, often of a different subtype. These can form a recombinant strain that co-exists with the strain from the initial infection, as well from reinfection with a new virus strain, and may cause more rapid disease progression or carry multiple resistances to certain HIV medications.

AIDSVAX is an experimental HIV vaccine that was developed originally at Genentech in San Francisco, California, and later tested by the VaxGen company, a Genentech offshoot. The development and trials of the vaccine received significant coverage in the international media, but American trials proved inconclusive. The vaccine was then tested on a group of at-risk individuals in Thailand.

Antibody-dependent enhancement A way in which antibodies can (rarely) make an infection worse instead of better

Antibody-dependent enhancement (ADE), sometimes less precisely called immune enhancement or disease enhancement, is a phenomenon in which binding of a virus to suboptimal antibodies enhances its entry into host cells, followed by its replication. Antiviral antibodies promote viral infection of target immune cells by exploiting the phagocytic FcγR or complement pathway. After interaction with the virus the antibody binds Fc receptors (FcR) expressed on certain immune cells or some of the complement proteins. FcγR binds antibody via its fragment crystallizable region (Fc). Usually the process of phagocytosis is accompanied by the virus degradation, however, if the virus is not neutralized, antibody binding might result in a virus escape and therefore, enhanced infection. Thus, phagocytosis can cause viral replication, with the subsequent death of immune cells. The virus “deceives” the process of phagocytosis of immune cells and uses the host's antibodies as a Trojan horse. ADE may occur due to the non-neutralizing characteristic of the antibody, which bind viral epitopes other than those involved in a host cell attachment and entry. ADE may also happen due to the presence of sub-neutralizing concentrations of antibodies. In addition ADE can be induced when the strength of antibody-antigen interaction is below the certain threshold. This phenomenon might lead to both increased virus infectivity and virulence. The viruses that can cause ADE frequently share some common features such as antigenic diversity, abilities to replicate and establish persistence in immune cells. ADE can occur during the development of a primary or secondary viral infection, as well as after vaccination with a subsequent virus challenge. It has been observed mainly with positive-strand RNA viruses. Among them are Flaviviruses such as Dengue virus, Yellow fever virus, Zika virus, Coronaviruses, including alpha- and betacoronaviruses, Orthomyxoviruses such as influenza, Retroviruses such as HIV, and Orthopneumoviruses such as RSV.

A neutralizing antibody (NAb) is an antibody that defends a cell from a pathogen or infectious particle by neutralizing any effect it has biologically. Neutralisation renders the particle no longer infectious or pathogenic. Neutralizing antibodies are part of the humoral response of the adaptive immune system against viruses, intracellular bacteria and microbial toxin. By binding specifically to surface structures (antigen) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its host cells it might infect and destroy. Immunity due to neutralizing antibodies is also known as sterilizing immunity, as the immune system eliminates the infectious particle before any infection takes place.

RV 144, or the Thai trial, is the name of an HIV vaccine clinical trial combining two vaccines that failed on their own, vaccinating in Thailand over the course of 24 weeks in October 2003 then testing for HIV until July 2006, publicly releasing efficacy findings in September 2009. The initial report shows that the rate of HIV infection among volunteers who received the experimental vaccine was 31% lower than the rate of HIV infection in volunteers who received the placebo. However, the reduction was not great enough for the Ministry of Public Health in Thailand to support approving the vaccine; it was reported in 2019 that it would have licensed it if the reduction had been 50% or more.

The STEP Study was a Phase IIb clinical trial intended to study the efficacy of an experimental HIV vaccine based on a human adenovirus 5 (HAdV-5) vector. The study was conducted in North and South America, the Caribbean, and Australia. A related study using the same experimental vaccine was conducted simultaneously in South Africa. These trials were co-sponsored by Merck, the HIV Vaccine Trials Network (HVTN), and the National Institute of Allergy and Infectious Diseases (NIAID), and had an Oversight Committee consisting of representatives from these three organizations. In South Africa the trial was overseen by the South African AIDS Vaccine Initiative.

HVTN 505 is a clinical trial testing an HIV vaccine regimen on research participants. The trial is conducted by the HIV Vaccine Trials Network and sponsored by the National Institute of Allergy and Infectious Diseases. Vaccinations were stopped in April 2013 due to initial results showing that the vaccine was ineffective in preventing HIV infections and lowering viral load among those participants who had become infected with HIV. All study participants will continue to be monitored for safety and any long-term effects.

MVA-B, or Modified Vaccinia Ankara B, is a particular HIV vaccine created to give immune resistance to infection by the human immunodeficiency virus. It was developed by a team of Spanish researchers at the Spanish National Research Council's Biotechnology National Centre headed by Dr. Mariano Esteban. The vaccine is based on the Modified vaccinia Ankara (MVA) virus used during the 1970s to help eradicate the smallpox virus. The B in the name "refers to HIV-B, the most common HIV subtype in Europe". It has been stated by Dr. Esteban that, in the future, the vaccine could potentially reduce the virulence of HIV to a "minor chronic infection akin to herpes".

SAV001-H is the first preventive HIV vaccine using a killed or "dead version" of HIV-1 virus.

HIV/AIDS research Field of immunology research

HIV/AIDS research includes all medical research that attempts to prevent, treat, or cure HIV/AIDS, as well as fundamental research about the nature of HIV as an infectious agent and AIDS as the disease caused by HIV.

M. Juliana “Julie” McElrath is a senior vice president and director of the vaccine and infectious disease division at Fred Hutchinson Cancer Research Center and principal investigator of the HIV Vaccine Trials Network Laboratory Center in Seattle, Washington. She also is a professor at the University of Washington.

Universal flu vaccine

A universal flu vaccine is a flu vaccine that is effective against all influenza strains regardless of the virus sub type, antigenic drift or antigenic shift. Hence it should not require modification from year to year. As of 2019 there has been no approved universal flu vaccine for general use, but several have been in development.

Susan Zolla-Pazner

Susan Zolla-Pazner is an American research scientist who is a Professor of Medicine in the Division of Infectious Diseases and the Department of Microbiology at Mount Sinai School of Medicine and a guest investigator in the Laboratory of Molecular Immunology at The Rockefeller University, both in New York City. Zolla-Pazner's work has focused on how the immune system responds to the human immunodeficiency virus (HIV) and, in particular, how antibodies against the viral envelope develop in the course of infection.

Intrastructural help (ISH) is where T and B cells cooperate to help or suppress an immune response gene. ISH has proven effective for the treatment of influenza, rabies related lyssavirus, hepatitis B, and the HIV virus. This process was used in 1979 to observe that T cells specific to the influenza virus could promote the stimulation of hemagglutinin specific B cells and elicit an effective humoral immune response. It was later applied to the lyssavirus and was shown to protect raccoons from lethal challenge. The ISH principle is especially beneficial because relatively invariable structural antigens can be used for the priming of T-cells to induce humoral immune response against variable surface antigens. Thus, the approach has also transferred well for the treatment of hepatitis B and HIV.

Hanneke Schuitemaker is a Dutch virologist, the Global Head of Viral Vaccine Discovery and Translational Medicine at Johnson & Johnson's Janssen Vaccines & Prevention, and a Professor of Virology at the Amsterdam University Medical Center of the University of Amsterdam. She has been involved in the development of Janssen's Ebola vaccine and is involved in the development of a universal flu vaccine, HIV vaccine, RSV vaccine and COVID-19 vaccine.

References

  1. Gray GE, Laher F, Lazarus E, Ensoli B, Corey L (April 2016). "Approaches to preventative and therapeutic HIV vaccines". Current Opinion in Virology. 17: 104–109. doi:10.1016/j.coviro.2016.02.010. PMC   5020417 . PMID   26985884.
  2. 1 2 Joint United Nations Programme on HIV/AIDS (UNAIDS) (December 2005). "AIDS epidemic update" (PDF). World Health Organization . Retrieved 2014-04-22.
  3. UNAIDS (2004) Report on the global AIDS epidemic, July 2004
  4. "1 October news". Clinical Infectious Diseases. 55 (7): i–ii. October 2012. doi: 10.1093/cid/cis674 . PMID   23126012.
  5. Gray GE, Laher F, Doherty T, Abdool Karim S, Hammer S, Mascola J, Beyrer C, Corey L (March 2016). "Which New Health Technologies Do We Need to Achieve an End to HIV/AIDS?". PLOS Biology. 14 (3): e1002372. doi:10.1371/journal.pbio.1002372. PMC   4774984 . PMID   26933962.
  6. Shilts, Randy (1987). And the Band Played On: Politics, People, and the AIDS Epidemic (2007 ed.). St. Martin's Press. p.  451. ISBN   978-0-312-24135-3.
  7. Fauci AS (1996). "An HIV vaccine: breaking the paradigms". Proc. Am. Assoc. Phys. 108 (1): 6–13. PMID   8834058.
  8. Kim D, Elizaga M, Duerr A (March 2007). "HIV vaccine efficacy trials: towards the future of HIV prevention". Infectious Disease Clinics of North America. 21 (1): 201–17, x. doi:10.1016/j.idc.2007.01.006. PMID   17502236.
  9. Watkins DI (March 2008). "The hope for an HIV vaccine based on induction of CD8+ T lymphocytes--a review". Memórias do Instituto Oswaldo Cruz. 103 (2): 119–29. doi:10.1590/S0074-02762008000200001. PMC   2997999 . PMID   18425263.
  10. Létourneau S, Im EJ, Mashishi T, Brereton C, Bridgeman A, Yang H, Dorrell L, Dong T, Korber B, McMichael AJ, Hanke T (October 2007). Nixon D (ed.). "Design and pre-clinical evaluation of a universal HIV-1 vaccine". PLOS ONE. 2 (10): e984. Bibcode:2007PLoSO...2..984L. doi:10.1371/journal.pone.0000984. PMC   1991584 . PMID   17912361.
  11. Poignard P, Sabbe R, Picchio GR, Wang M, Gulizia RJ, Katinger H, et al. (April 1999). "Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo". Immunity. 10 (4): 431–8. doi:10.1016/S1074-7613(00)80043-6. PMID   10229186.
  12. Berman PW, Gregory TJ, Riddle L, Nakamura GR, Champe MA, Porter JP, et al. (June 1990). "Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gp120 but not gp160". Nature. 345 (6276): 622–5. Bibcode:1990Natur.345..622B. doi:10.1038/345622a0. PMID   2190095. S2CID   4258128.
  13. Connor RI, Korber BT, Graham BS, Hahn BH, Ho DD, Walker BD, et al. (February 1998). "Immunological and virological analyses of persons infected by human immunodeficiency virus type 1 while participating in trials of recombinant gp120 subunit vaccines". Journal of Virology. 72 (2): 1552–76. doi:10.1128/JVI.72.2.1552-1576.1998. PMC   124637 . PMID   9445059.
  14. Morgan C, Marthas M, Miller C, Duerr A, Cheng-Mayer C, Desrosiers R, et al. (August 2008). "The use of nonhuman primate models in HIV vaccine development". PLOS Medicine. 5 (8): e173. doi:10.1371/journal.pmed.0050173. PMC   2504486 . PMID   18700814.
  15. Marques R, Williams A, Eksmond U, Wullaert A, Killeen N, Pasparakis M, et al. (2009). "Generalized immune activation as a direct result of activated CD4+ T cell killing". Journal of Biology. 8 (10): 93. doi:10.1186/jbiol194. PMC   2790834 . PMID   19943952.
  16. Vrisekoop N, Mandl JN, Germain RN (2009). "Life and death as a T lymphocyte: from immune protection to HIV pathogenesis". Journal of Biology. 8 (10): 91. doi:10.1186/jbiol198. PMC   2790836 . PMID   19951397.
  17. Bekker LG, Moodie Z, Grunenberg N, Laher F, Tomaras GD, Cohen KW, et al. (June 2018). "Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial". The Lancet. HIV. 5 (7): e366–e378. doi:10.1016/S2352-3018(18)30071-7. PMC   6028742 . PMID   29898870.
  18. Pavot V, Rochereau N, Lawrence P, Girard MP, Genin C, Verrier B, Paul S (July 2014). "Recent progress in HIV vaccines inducing mucosal immune responses". AIDS. 28 (12): 1701–18. doi:10.1097/qad.0000000000000308. PMID   25009956. S2CID   28618851.
  19. "New Vaccine Could Turn HIV Into Minor Infection". Fox News. 2011-09-29. Retrieved 29 September 2011.
  20. Choi E, Michalski CJ, Choo SH, Kim GN, Banasikowska E, Lee S, et al. (November 2016). "First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses". Retrovirology. 13 (1): 82. doi:10.1186/s12977-016-0317-2. PMC   5126836 . PMID   27894306.
  21. "New HIV Vaccine Proves Successful In Phase 1 Human Trial". Medical Daily. New York. 2013-09-04. Retrieved 2013-09-04.
  22. "STEP Study Locations". Archived from the original on 2008-07-24. Retrieved 2008-11-04.
  23. Efficacy Results from the STEP Study (Merck V520 Protocol 023/HVTN 502): A Phase II Test-of-Concept Trial of the MRKAd5 HIV-1 Gag/Pol/Nef Trivalent Vaccine Archived 2011-07-26 at the Wayback Machine
  24. Sekaly RP (January 2008). "The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development?". The Journal of Experimental Medicine. 205 (1): 7–12. doi:10.1084/jem.20072681. PMC   2234358 . PMID   18195078.
  25. Iaccino E, Schiavone M, Fiume G, Quinto I, Scala G (July 2008). "The aftermath of the Merck's HIV vaccine trial". Retrovirology. 5: 56. doi:10.1186/1742-4690-5-56. PMC   2483718 . PMID   18597681.
  26. Huang Y, Karuna S, Carpp LN, Reeves D, Pegu A, Seaton K, et al. (April 2018). "Modeling cumulative overall prevention efficacy for the VRC01 phase 2b efficacy trials". Human Vaccines & Immunotherapeutics. 14 (9): 2116–2127. doi:10.1080/21645515.2018.1462640. PMC   6183277 . PMID   29683765.
  27. "Candidate for new AIDS vaccine advances to next phase of pre-approval trials- Technology News, Firstpost". Tech2. 2018-07-08. Retrieved 2018-07-11.
  28. Loret EP, Darque A, Jouve E, Loret EA, Nicolino-Brunet C, Morange S, et al. (April 2016). "Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cART interruption in a phase I/II randomized controlled clinical trial". Retrovirology. 13: 21. doi:10.1186/s12977-016-0251-3. PMC   4818470 . PMID   27036656.
  29. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al. (December 2009). "Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand". The New England Journal of Medicine. 361 (23): 2209–20. doi:10.1056/NEJMoa0908492. PMID   19843557.
  30. Callaway E (16 September 2011). "Clues emerge to explain first successful HIV vaccine trial". Nature. doi:10.1038/news.2011.541.
  31. "Experimental HIV vaccine regimen ineffective in preventing HIV". NIH. 3 February 2020. Retrieved 4 February 2020.
  32. 15 July 2019 (2019-07-15). "NIH and partners to launch HIV vaccine efficacy trial in the Americas and Europe". National Institutes of Health . Retrieved 23 July 2019.
  33. "Investing to End the AIDS Epidemic: A new Era for HIV Prevention Research and Development" (PDF). Archived from the original (PDF) on 2012-12-14. Retrieved 2010-12-13.
  34. Berndt ER, Glennerster R, Kremer M, Lee J, Levine R, Weizsacker G, et al. (April 2005). "Advanced Purchase Commitments for a Malaria Vaccine: Estimating Costs and Effectiveness". NBER Working Paper. doi:10.2139/ssrn.696741. SSRN   696741 .
  35. Collier L, Balows A, Sussman M (1998). Mahy B, Collier L (eds.). Virology. Topley and Wilson's Microbiology and Microbial Infections. 1 (ninth ed.). Hodder Education Publishers. pp. 75–91. ISBN   978-0-340-66316-5.
  36. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (April 2002). "A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening". Journal of Medicinal Chemistry. 45 (8): 1712–22. doi:10.1021/jm010533y. PMID   11931626.
  37. Compared with overview in: Fisher, Bruce; Harvey, Richard P.; Champe, Pamela C. (2007). Lippincott's Illustrated Reviews: Microbiology (Lippincott's Illustrated Reviews Series). Hagerstown, MD: Lippincott Williams & Wilkins. ISBN   0-7817-8215-5. Page 3
  38. Foley B, Leitner T, Apetrei C, Hahn B, Mizrachi I, Mullins J, Rambaut A, Wolinsky S, Korber B (2017). HIV Sequence Compendium (Report). Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, LA-UR 17-25240.
  39. Malashkevich VN, Chan DC, Chutkowski CT, Kim PS (August 1998). "Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides". Proceedings of the National Academy of Sciences of the United States of America. 95 (16): 9134–9. Bibcode:1998PNAS...95.9134M. doi:10.1073/pnas.95.16.9134. PMC   21304 . PMID   9689046.
  40. Bagasra O, Bagasra AU, Sheraz M, Pace DG (March 2012). "Potential utility of GB virus type C as a preventive vaccine for HIV-1". Expert Review of Vaccines. 11 (3): 335–47. doi:10.1586/erv.11.191. PMID   22380825. S2CID   26476119.
  41. Wang N, Li Y, Niu W, Sun M, Cerny R, Li Q, Guo J (May 2014). "Construction of a live-attenuated HIV-1 vaccine through genetic code expansion". Angewandte Chemie. 53 (19): 4867–71. doi:10.1002/anie.201402092. PMC   4984542 . PMID   24715496.