Headlands and bays

Last updated

Headland and bay are related coastal features often found on the same coastline. A bay is a body of water, usually seawater (salt water) but sometimes fresh water, that is mostly surrounded by land. A headland is surrounded by water on three sides. Headlands are characterised by breaking waves, rocky shores, intense erosion and steep sea cliffs. Bays generally have less wave activity and typically have sandy beaches. Headlands and bays form on discordant coastlines, where the land consists of bands of rock of alternating resistance running perpendicular to the coast.


Geology and geography

Beachy Head cliffs and bay
East Sussex, England Beachy Head and Lighthouse, East Sussex, England - April 2010 crop horizon corrected.jpg
Beachy Head cliffs and bay
East Sussex, England

Bays form where less resistant rocks, such as sands and clays, are eroded, leaving bands of stronger, or more resistant rocks, (such as chalk, limestone, and granite), which form a headland or peninsula. Refraction of waves occurs on headlands concentrating wave energy on them, so many other landforms, such as caves, natural arches, and stacks, form on headlands. Wave energy is directed at right angles to the wave crest, and lines drawn at right angles to the wave crest (orthogonals) represent the direction of energy expenditure. Orthogonals converge on headlands and diverge in bays, which concentrates wave energy on the headlands and dissipates wave energy in the bays. [1]

In the formation of sea cliffs, wave erosion undercuts the slopes at the shoreline, which retreat landward. This increases the shear stress in the cliff-forming material and accelerates mass movement. [1] The debris from these landslides collects at the base of the cliff and is also removed by the waves, usually during storms, when wave energy is greatest. This debris provides sediment, which is transported through longshore current for the nearby bay. Joints in the headlands are eroded back to form caves, which erode further to form arches. These gaps eventually collapse and leave tall stacks at the ends of the headlands. Eventually these too are eroded by the waves. [2]

Wave refraction disperses wave energy through the bay, and along with the sheltering effect of the headlands, this protects bays from storms. This effect means that the waves reaching the shore in a bay are weaker than the waves reaching the headland, and the bay is thus a safer place for water activities like surfing or swimming. Through the deposition of sediment within the bay and the erosion of the headlands, coastlines eventually straighten out. But then the same process starts all over again.

Beach stability

A beach is a dynamic geologic feature that can fluctuate between advancement and retreat of sediment. The natural agents of fluctuation include waves, tides, currents, and winds. Man-made elements such as the interruption of sediment supply, such as a dam, and withdrawal of fluid can also affect beach stabilization. [3] Static equilibrium refers to a beach that is stable and experiences neither littoral drift nor sediment deposition nor erosion. [4] Waves generally diffract around the headland(s) and near the beach when the beach is in a state of static equilibrium. Dynamic equilibrium occurs when the beach sediments are deposited and eroded at approximately equal rates. [4] Beaches that have dynamic equilibrium are usually near a river that supplies sediment and would otherwise erode away without the river supply. Unstable beaches are usually a result of human interaction, such as a breakwater or dammed river. [4] Unstable beaches are reshaped by continual erosion or deposition and will continue to erode or deposit until a state of equilibrium is reached in the bay.

Related Research Articles

Coast Area where land meets the sea or ocean

The coast, also known as the coastline or seashore, is defined as the area where land meets the sea or ocean, or as a line that forms the boundary between the land and the ocean or a lake. Around 620,000 kilometres (390,000 mi) of coastline are on Earth. Because of the coastline paradox, a coastline's exact perimeter cannot be determined.

Beach Area of loose particles at the edge of the sea or other body of water

A beach is a landform alongside a body of water which consists of loose particles. The particles composing a beach are typically made from rock, such as sand, gravel, shingle, pebbles. The particles can also be biological in origin, such as mollusc shells or coralline algae.

Coastal erosion The loss or displacement of land along the coastline due to the action of waves, currents, tides. wind-driven water, waterborne ice, or other impacts of storms

Coastal erosion is the loss or displacement of land, or the long-term removal of sediment and rocks along the coastline due to the action of waves, currents, tides, wind-driven water, waterborne ice, or other impacts of storms. The landward retreat of the shoreline can be measured and described over a temporal scale of tides, seasons, and other short-term cyclic processes. Coastal erosion may be caused by hydraulic action, abrasion, impact and corrosion by wind and water, and other forces, natural or unnatural.

Tombolo Deposition landform in which an island is connected to the mainland by a sandy isthmus

A tombolo is a sandy isthmus. A tombolo, from the Italian tombolo, meaning 'pillow' or 'cushion', and sometimes translated as ayre, is a deposition landform in which an island is attached to the mainland by a narrow piece of land such as a spit or bar. Once attached, the island is then known as a tied island.

Stack (geology) geological landform consisting of a steep and often vertical column or columns of rock

A stack or sea stack is a geological landform consisting of a steep and often vertical column or columns of rock in the sea near a coast, formed by wave erosion. Stacks are formed over time by wind and water, processes of coastal geomorphology. They are formed when part of a headland is eroded by hydraulic action, which is the force of the sea or water crashing against the rock. The force of the water weakens cracks in the headland, causing them to later collapse, forming free-standing stacks and even a small island. Without the constant presence of water, stacks also form when a natural arch collapses under gravity, due to sub-aerial processes like wind erosion. Erosion causes the arch to collapse, leaving the pillar of hard rock standing away from the coast—the stack. Eventually, erosion will cause the stack to collapse, leaving a stump. Stacks can provide important nesting locations for seabirds, and many are popular for rock climbing.

Shoal Natural submerged sandbank that rises from a body of water to near the surface

In oceanography, geomorphology, and earth sciences, a shoal is a natural submerged ridge, bank, or bar that consists of, or is covered by, sand or other unconsolidated material, and rises from the bed of a body of water to near the surface. Often it refers to those submerged ridges, banks, or bars that rise near enough to the surface of a body of water as to constitute a danger to navigation. Shoals are also known as sandbanks, sandbars, or gravelbars. Two or more shoals that are either separated by shared troughs or interconnected by past or present sedimentary and hydrographic processes are referred to as a shoal complex.

Spit (landform) Coastal bar or beach landform deposited by longshore drift

A spit or sandspit is a deposition bar or beach landform off coasts or lake shores. It develops in places where re-entrance occurs, such as at a cove's headlands, by the process of longshore drift by longshore currents. The drift occurs due to waves meeting the beach at an oblique angle, moving sediment down the beach in a zigzag pattern. This is complemented by longshore currents, which further transport sediment through the water alongside the beach. These currents are caused by the same waves that cause the drift.

Longshore drift Sediment moved by the longshore current

Longshore drift from longshore current is a geological process that consists of the transportation of sediments along a coast parallel to the shoreline, which is dependent on oblique incoming wave direction. Oblique incoming wind squeezes water along the coast, and so generates a water current which moves parallel to the coast. Longshore drift is simply the sediment moved by the longshore current. This current and sediment movement occur within the surf zone.

Groyne Structure extending into body of water to limit movement of sediment

A groyne, built perpendicular to the shore, is a rigid hydraulic structure built from an ocean shore or from a bank that interrupts water flow and limits the movement of sediment. It is usually made out of wood, concrete, or stone. In the ocean, groynes create beaches, prevent beach erosion caused by longshore drift where this is the dominant process and facilitate beach nourishment. There is also often cross-shore movement which if longer than the groyne will limit its effectiveness.

Deposition (geology) Geological process in which sediments, soil and rocks are added to a landform or land mass

Deposition is the geological process in which sediments, soil and rocks are added to a landform or land mass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment.

Coastal morphodynamics refers to the study of the interaction and adjustment of the seafloor topography and fluid hydrodynamic processes, seafloor morphologies and sequences of change dynamics involving the motion of sediment. Hydrodynamic processes include those of waves, tides and wind-induced currents.

Coastal geography Study of the region between the ocean and the land

Coastal geography is the study of the constantly changing region between the ocean and the land, incorporating both the physical geography and the human geography of the coast. It includes understanding coastal weathering processes, particularly wave action, sediment movement and weather, and the ways in which humans interact with the coast

Coastal management Defense against flooding and erosion

Coastal management is defence against flooding and erosion, and techniques that stop erosion to claim lands.

Swash A turbulent layer of water that washes up on the beach after an incoming wave has broken

Swash, or forewash in geography, is a turbulent layer of water that washes up on the beach after an incoming wave has broken. The swash action can move beach materials up and down the beach, which results in the cross-shore sediment exchange. The time-scale of swash motion varies from seconds to minutes depending on the type of beach. Greater swash generally occurs on flatter beaches. The swash motion plays the primary role in the formation of morphological features and their changes in the swash zone. The swash action also plays an important role as one of the instantaneous processes in wider coastal morphodynamics.

Cuspate foreland Geographical features found on coastlines and lakeshores that are created primarily by longshore drift

Cuspate forelands, also known as cuspate barriers or nesses in Britain, are geographical features found on coastlines and lakeshores that are created primarily by longshore drift. Formed by accretion and progradation of sand and shingle, they extend outwards from the shoreline in a triangular shape.

Beach evolution occurs at the shoreline where sea, lake or river water is eroding the land. Beaches exist where sand accumulated from centuries-old, recurrent processes that erode rocky and sedimentary material into sand deposits. River deltas deposit silt from upriver, accreting at the river's outlet to extend lake or ocean shorelines. Catastrophic events such as tsunamis, hurricanes, and storm surges accelerate beach erosion.

Sedimentary budget term

Sedimentary budgets are a coastal management tool used to analyze and describe the different sediment inputs (sources) and outputs (sinks) on the coasts, which is used to predict morphological change in any particular coastline over time. Within a coastal environment the rate of change of sediment is dependent on the amount of sediment brought into the system versus the amount of sediment that leaves the system. These inputs and outputs of sediment then equate to the total balance of the system and more than often reflect the amounts of erosion or accretion affecting the morphology of the coast.

A headland, also known as a head, is a coastal landform, a point of land usually high and often with a sheer drop, that extends into a body of water. It is a type of promontory. A headland of considerable size often is called a cape. Headlands are characterised by high, breaking waves, rocky shores, intense erosion, and steep sea cliff.

Canterbury Bight bay in New Zealand

The Canterbury Bight is a large bight on the eastern side of New Zealand's South Island. The bight runs for approximately 135 kilometres (84 mi) from the southern end of Banks Peninsula to the settlement of Timaru and faces southeast, exposing it to high-energy storm waves originating in the Pacific Ocean. The bight is known for rough conditions as a result, with wave heights of over 2 metres (6.6 ft) common. Much of the bight's geography is shaped by this high-energy environment interacting with multiple large rivers which enter the Pacific in the bight, such as the Rakaia, Ashburton / Hakatere, and Rangitata Rivers. Sediment from these rivers, predominantly Greywacke, is deposited along the coast and extends up to 50 kilometres (31 mi) out to sea from the current shoreline. Multiple hapua, or river-mouth lagoons, can be found along the length of the bight where waves have deposited sufficient sediment to form a barrier across a river mouth, including most notably Lake Ellesmere / Te Waihora and Washdyke Lagoon


  1. 1 2 Easterbrook, Don (1999). Surface Processes and Landforms (2nd ed.). Prentice Hall.
  2. "Erosion and Deposition in Coastal Headlands". 2001. Retrieved 28 January 2016.
  3. Schwartz, M. (2005). "Encyclopedia of Coastal Science" . Springer. ISBN   978-1-4020-1903-6 p399
  4. 1 2 3 Benedet, L.; Klein, A. H. F.; Hsu, J. R.-C. (2004). Practical Insights and Applications of Empirical Bay Shape Equations. International Conference on Coastal Engineering 2004. Lisbon: American Society of Civil Engineers. pp. 2181–2193. doi:10.1142/9789812701916_0175. ISBN   978-981-256-298-2.