Helios Prototype

Last updated
Helios Prototype
Helios in flight.jpg
Helios Prototype in flight
Role Unmanned aerial vehicle
Manufacturer AeroVironment
First flightSeptember 8, 1999
StatusDestroyed in 2003
Primary user NASA ERAST Program
Number built1
Developed from NASA Pathfinder, Pathfinder Plus and NASA Centurion

The Helios Prototype was the fourth and final aircraft developed as part of an evolutionary series of solar- and fuel-cell-system-powered unmanned aerial vehicles. AeroVironment, Inc. developed the vehicles under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. They were built to develop the technologies that would allow long-term, high-altitude aircraft to serve as atmospheric satellites, to perform atmospheric research tasks as well as serve as communications platforms. [1] It was developed from the NASA Pathfinder and NASA Centurion aircraft.

Contents

Helios Prototype

Pathfinder Plus (left) and Helios Prototype (right) on the Dryden ramp Pathfinder Plus and Helios Prototype at Dryden.jpg
Pathfinder Plus (left) and Helios Prototype (right) on the Dryden ramp
AeroVironment Chairman Paul MacCready shows a cross section of the AeroVironment/Helios Prototype wing spar. Paul maccready.jpg
AeroVironment Chairman Paul MacCready shows a cross section of the AeroVironment/Helios Prototype wing spar.

The NASA Centurion was modified into the Helios Prototype configuration by adding a sixth 41 feet (12 m) wing section and a fifth landing gear and systems pod, becoming the fourth configuration in the series of solar-powered flying wing demonstrator aircraft developed by AeroVironment under the ERAST project. The larger wing on the Helios Prototype accommodated more solar arrays to provide adequate power for the sun-powered development flights that followed. [1] The aircraft's maiden flight was on September 8, 1999. [2]

The ERAST program had two goals when developing the Helios Prototype: 1) sustained flight at altitudes near 100,000 feet (30,000 m) and 2) endurance of at least 24 hours, including at least 14 of those hours above 50,000 feet (15,000 m). To this end, the Helios Prototype could be configured in two different ways. The first, designated HP01, focused on achieving the altitude goals and powered the aircraft with batteries and solar cells. The second configuration, HP03, optimized the aircraft for endurance, and used a combination of solar cells, storage batteries and a modified commercial hydrogen–air fuel cell system for power at night. In this configuration, the number of motors was reduced from 14 to ten. [3]

Using the traditional incremental or stairstep approach to flight testing, the Helios Prototype was first flown in a series of battery-powered development flights in late 1999 to validate the longer wing's performance and the aircraft's handling qualities. Instrumentation that was used for the follow-on solar-powered altitude and endurance flights was also checked out and calibrated during the initial low-altitude flights at NASA Dryden. [1]

Aircraft description

Helios Prototype flying wing moments after takeoff, beginning its first test flight on solar power from the U.S. Navy's Pacific Missile Range Facility on Kauai, Hawaii, July 14, 2001. Helios Prototype flying wing.jpg
Helios Prototype flying wing moments after takeoff, beginning its first test flight on solar power from the U.S. Navy's Pacific Missile Range Facility on Kauai, Hawaii, July 14, 2001.

The Helios Prototype is an ultra-lightweight flying wing aircraft with a wingspan of 247 feet (75 m), longer than the wingspans of the U.S. Air Force C-5 military transport (222 feet (68 m) or the Boeing 747 (195 or 224 feet (59 or 68 m), depending on the model), the two largest operational aircraft built in the United States. The electrically powered Helios is constructed mostly of composite materials such as carbon fiber, graphite epoxy, Kevlar, Styrofoam, and a thin, transparent plastic skin. The main tubular wing spar is made of carbon fiber. The spar, which is thicker on the top and bottom to absorb the constant bending motions that occur during flight, is also wrapped with Nomex and Kevlar for additional strength. The wing ribs are also made of epoxy and carbon fiber. Shaped Styrofoam is used for the wing's leading edge and a durable clear plastic film covers the entire wing. [1]

The Helios Prototype shares the same 8-foot (2.4 m) wing chord (distance from leading to trailing edge) as its Pathfinder and Centurion predecessors. The 247-foot (75 m) wingspan gives the Helios Prototype an aspect ratio of almost 31 to 1. The wing thickness is the same from tip to tip, 11.5 inches (29 cm) or 12 percent of the chord, and it has no taper or sweep. The outer panels have a built-in 10-degree dihedral to give the aircraft more lateral stability. A slight upward twist at the tips of the trailing edge helps prevent wing tip stalls during the slow landings and turns. The wing area is 1,976 sq ft (183.6 m2)., which gives the craft a maximum wing loading of only 0.81 lb./sq. ft. when flying at a gross weight of 1,600 lb. [1]

The all-wing aircraft is assembled in six sections, each about 41 feet (12 m) long. An underwing pod is attached at each panel joint to carry the landing gear, the battery power system, flight control computers, and data instrumentation. The five aerodynamically shaped pods are made mostly of the same materials as the wing itself, with the exception of the transparent wing covering. Two wheels on each pod make up the fixed landing gear—rugged mountain bike wheels on the rear and smaller scooter wheels on the front. [1]

The only flight control surfaces used on the Helios Prototype are 72 trailing-edge elevators that provide pitch control. Spanning the entire wing, they are operated by tiny servomotors linked to the aircraft's flight control computer. To turn the aircraft in flight, yaw control is applied by applying differential power on the motors — speeding up the motors on one outer wing panel while slowing down motors on the other outer panel. A major test during the initial flight series was the evaluation of differential motor power as a means of pitch control. During normal cruise the outer wing panels of Helios are arched upward and give the aircraft the shape of a shallow crescent when viewed from the front or rear. This configuration places the motors on the outer wing panels higher than the motors on the center panels. Speeding up the outer-panel motors caused the aircraft to pitch down and begin a descent. Conversely, applying additional power to the motors in the center panels caused Helios to pitch up and begin climbing. [1]

From 2000 to 2001, the HP01 received a number of upgrades, including new avionics, high-altitude environmental control systems and SunPower solar array composed of more than 62,000 solar cells installed on the upper wing surface. [3] These cells featured a rear-contact cell design that placed wires on the underside of the cells, so as not to obstruct the cells' exposure to solar radiation.

Records

Helios with very high wing dihedral just before breaking up Pages from 64317main helios-1.jpg
Helios with very high wing dihedral just before breaking up
Helios disintegrates as it falls towards the Pacific Pages from 64317main helios-2.jpg
Helios disintegrates as it falls towards the Pacific
Wreckage of Helios in the Pacific Pages from 64317main helios-3.jpg
Wreckage of Helios in the Pacific

On August 13, 2001, [1] the Helios Prototype piloted remotely by Greg Kendall reached an altitude of 96,863 feet (29,524 m), a world record for sustained horizontal flight by a winged aircraft. [4] The altitude reached was more than 11,000 feet (3,400 m) — or more than 2 miles (3.2 km) — above the previous altitude record for sustained flight by a winged aircraft. In addition, the aircraft spent more than 40 minutes above 96,000 feet (29,000 m). [1]

Crash

On June 26, 2003, the Helios Prototype broke up and fell into the Pacific Ocean about ten miles (16 km) west of the Hawaiian Island Kauai during a remotely piloted systems checkout flight in preparation for an endurance test scheduled for the following month. [5]

On the morning of the accident, weather forecasts indicated that conditions were inside the acceptable envelope, although during the preflight go/no-go review, the weather forecaster gave it a "very marginal GO." One of the primary concerns was a pair of wind shear zones off the island's coast. After a delayed take off, due to the failure of the winds to shift as predicted, Helios spent more time than expected flying through a zone of low-level turbulence on the lee side of Kauai, because it was climbing more slowly than normal, since it had to contend with cloud shadows and the resultant reduction in solar power.

As the aircraft climbed through 2,800 feet (850 m) 30 minutes into the flight, according to the subsequent mishap investigation report "the aircraft encountered turbulence and morphed into an unexpected, persistent, high dihedral configuration. As a result of the persistent high dihedral, the aircraft became unstable in a very divergent pitch mode in which the airspeed excursions from the nominal flight speed about doubled every cycle of the oscillation. The aircraft’s design airspeed was subsequently exceeded and the resulting high dynamic pressures caused the wing leading edge secondary structure on the outer wing panels to fail and the solar cells and skin on the upper surface of the wing to rip off. The aircraft impacted the ocean within the confines of the Pacific Missile Range Facility test range and was destroyed. Most of the vehicle structure was recovered except the hydrogen–air fuel cell pod and two of the ten motors, which sank into the ocean." [3]

The investigation report identified a two-part root cause of the accident:

  1. "Lack of adequate analysis methods led to an inaccurate risk assessment of the effects of configuration changes leading to an inappropriate decision to fly an aircraft configuration highly sensitive to disturbances."
  2. "Configuration changes to the aircraft, driven by programmatic and technological constraints, altered the aircraft from a spanloader to a highly point-loaded mass distribution on the same structure significantly reducing design robustness and margins of safety." [3]

Specifications

Solar Aircraft Evolution through the ERAST Program Solar Aircraft Evolution through the ERAST Program.png
Solar Aircraft Evolution through the ERAST Program
Schematic of Helios HP03 Hydrogen-Air Fuel Cell Configuration Schematic of HP03 Hydrogen-Air Fuel Cell Configuration.png
Schematic of Helios HP03 Hydrogen-Air Fuel Cell Configuration
Specifications [1] [3] [6] [7]
 PathfinderPathfinder-PlusCenturionHelios HP01Helios HP03
Length ft (m)12 (3.6)12 (3.6)12 (3.6)12 (3.6)16.5 (5.0)
Chord ft (m)8 (2.4)
Wingspan ft (m)98.4 (29.5)121 (36.3)206 (61.8)247 (75.3)
Aspect ratio12 to 115 to 126 to 130.9 to 1
Glide ratio18 to 121 to 1???
Airspeed kts (km/h)15–18 (27–33)16.5–23.5 (30.6–43.5)?
Max altitude ft (m)71,530 (21,802)80,201 (24,445)n/a96,863 (29,523)65,000 (19,812)
Empty Wt lb (kg)???1,322 (600)?
Max. weight lb (kg)560 (252)700 (315)±1,900 (±862)2,048 (929)2,320 (1,052)
Payload lb (kg)100 (45)150 (67,5)100–600 (45–270)726 (329)?
Engineselectric, 2 hp (1.5 kW) each
No. of engines68141410
Solar pwr output (kW)7.512.531?18.5
Supplemental powerbatteriesbatteriesbatteriesLi batteriesLi batteries, fuel cell

See also

The footage shows the Helios in the air

Related Research Articles

MacCready <i>Gossamer Condor</i>

The MacCready Gossamer Condor was the first human-powered aircraft capable of controlled and sustained flight; as such, it won the Kremer prize in 1977. Its design was led by Paul MacCready of AeroVironment, Inc.

NASA Pathfinder unmanned aerial vehicle developed by NASA

The NASA Pathfinder and NASA Pathfinder Plus were the first two aircraft developed as part of an evolutionary series of solar- and fuel-cell-system-powered unmanned aerial vehicles. AeroVironment, Inc. developed the vehicles under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. They were built to develop the technologies that would allow long-term, high-altitude aircraft to serve as atmospheric satellites, to perform atmospheric research tasks as well as serve as communications platforms. They were developed further into the NASA Centurion and NASA Helios aircraft.

Solar vehicle

A solar vehicle is an electric vehicle powered completely or significantly by direct solar energy. Usually, photovoltaic (PV) cells contained in solar panels convert the sun's energy directly into electric energy. The term "solar vehicle" usually implies that solar energy is used to power all or part of a vehicle's propulsion. Solar power may be also used to provide power for communications or controls or other auxiliary functions.

AeroVironment American unmanned aerial vehicle manufacturer

AeroVironment, Inc. is an American defense contractor headquartered in Simi Valley, California, that is primarily involved in unmanned aerial vehicles (UAVs). Paul B. MacCready, Jr., a designer of human-powered aircraft, founded the company in 1971. The company is probably most well known for developing a series of lightweight human-powered and then solar-powered vehicles. AeroVironment is the Pentagon's top supplier of small drones — including the Raven, Wasp and Puma models.

History of unmanned aerial vehicles

UAVs include both autonomous drones and remotely piloted vehicles (RPVs). A UAV is capable of controlled, sustained level flight and is powered by a jet, reciprocating, or electric engine. In the twenty first century technology reached a point of sophistication that the UAV is now being given a greatly expanded role in many areas of aviation.

Miniature UAV

A miniature UAV or small UAV (SUAV) is an unmanned aerial vehicle small enough to be man-portable.

Electric aircraft Aircraft powered by electric motors as opposed to internal combustion engines

An electric aircraft is an aircraft powered by electric motors. Electricity may be supplied by a variety of methods including batteries, ground power cables, solar cells, ultracapacitors, fuel cells and power beaming.

NASA ERAST Program Program developed by NASA

The Environmental Research Aircraft and Sensor Technology, or ERAST program was a NASA program to develop cost-effective, slow-flying unmanned aerial vehicles (UAVs) that can perform long-duration science missions at altitudes above 60,000 feet. The project included a number of technology development programs conducted by the joint NASA-industry ERAST Alliance. The project was formally terminated in 2003.

General Atomics ALTUS

The General Atomics ALTUS is an unmanned aerial vehicle, designed for scientific research, built by General Atomics Aeronautical Systems (GA-ASI).

MacCready Solar Challenger

The Solar Challenger was a solar-powered electric aircraft designed by Paul MacCready's AeroVironment. The aircraft was designed as an improvement on the Gossamer Penguin, which in turn was a solar-powered variant of the human-powered Gossamer Albatross. It was powered entirely by the photovoltaic cells on its wing and stabilizer, without even reserve batteries, and was the first such craft capable of long-distance flight. In 1981, it successfully completed a 163-mile (262 km) demonstration flight from France to England.

MacCready <i>Gossamer Penguin</i>

The Gossamer Penguin was a solar-powered experimental aircraft created by Paul MacCready's AeroVironment.. MacCready, whose Gossamer Albatross had made the first human-powered flight in 1977, told reporters two weeks in June, 1980 that "The first solar-powered flight ever made took place on May 18." The testing ground was at Minter Field outside of Shafter, California.

Atmospheric satellite

Atmospheric satellite or pseudo-satellite is a marketing term for an aircraft that operates in the atmosphere at high altitudes for extended periods of time, in order to provide services conventionally provided by an artificial satellite orbiting in space.

The AstroFlight Sunrise was an unmanned experimental electric aircraft technology demonstrator and the first aircraft to fly on solar power.

The AeroVironment Global Observer is a concept for a high-altitude, long endurance unmanned aerial vehicle, designed by AeroVironment (AV) to operate as a stratospheric geosynchronous satellite system with regional coverage.

SHARP, short for Stationary High Altitude Relay Platform, was an experimental aircraft using beam-powered propulsion designed by the Communications Research Centre Canada (CRC) and built by the University of Toronto Institute for Aerospace Studies (UTIAS) during the 1980s. SHARP used microwaves to provide energy from a ground station that powered electric motors spinning propellers to keep the aircraft aloft. The power was also used for the onboard electronics. SHARP could remain aloft indefinitely, and was intended to be used as a sort of low-altitude communications satellite for smaller geographical areas.

The Solar-Powered Aircraft Developments Solar One is a British mid-wing, experimental, manned solar-powered aircraft that was designed by David Williams and produced by Solar-Powered Aircraft Developments under the direction of Freddie To. On 13 June 1979 it became one of the first solar-powered aircraft to fly, after the unmanned AstroFlight Sunrise and the manned Mauro Solar Riser, and the first successful British solar-powered aircraft.

NASA Centurion unmanned aerial vehicle developed by NASA

The NASA Centurion was the third aircraft developed as part of an evolutionary series of solar- and fuel-cell-system-powered unmanned aerial vehicles. AeroVironment, Inc. developed the vehicles under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. They were built to develop the technologies that would allow long-term, high-altitude aircraft to serve as atmospheric satellites, to perform atmospheric research tasks as well as serve as communications platforms. It was developed from the NASA Pathfinder Plus aircraft and was developed into the NASA Helios.

The Facebook Aquila is an experimental solar-powered drone developed by Facebook for use as an atmospheric satellite, intended to act as relay stations for providing internet access to remote areas. It first flew on 28 June 2016 with a second aircraft successfully flying in 2017. Internal development of the Aquila aircraft was stopped in June 2018.

The Odysseus is a solar, High-Altitude Long Endurance drone developed by Aurora Flight Sciences and planned to fly in April 2019.

HAPSMobile is a subsidiary of SoftBank planning to operate High Altitude Platform Station (HAPS) networks, with AeroVironment as a minority owner. HAPSMobile is developing the Hawk30 solar-powered unmanned aircraft for stratospheric telecommunications. It has a strategic relationship with Loon LLC, a subsidiary of Google's parent Alphabet Inc.

References

This article contains material that originally came from the web article "Unmanned Aerial Vehicles" by Greg Goebel, which exists in the Public Domain.PD-icon.svg This article incorporates  public domain material from websites or documents ofthe National Aeronautics and Space Administration .

  1. 1 2 3 4 5 6 7 8 9 10 NASA Armstrong Fact Sheet: Helios Prototype
  2. Helios Prototype fact sheet – old edition; archived at archive.org
  3. 1 2 3 4 5 Investigation of the Helios Prototype Aircraft Mishap – Volume 1, T.E. Noll et al., January 2004
  4. "Aviation and Space World Records". Fédération Aéronautique Internationale. Archived from the original on 16 October 2013. Retrieved 14 October 2013.
  5. "Helios Prototype Solar Aircraft Lost In Flight Mishap", Science Daily, July 1, 2003, accessed September 8, 2003
  6. NASA Pathfinder fact sheet, archived at archive.org
  7. NASA Centurion Fact Sheet archived at archive.org