Immunoglobulin I-set domain

Last updated
Immunoglobulin I-set domain
PDB 1evt EBI.jpg
Structures of fibroblast growth factor 1. [1]
Identifiers
SymbolI-set
Pfam PF07679
InterPro IPR013098
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1bih B:327-412 1cs6 A:322-407 1cvs C:159-247 1epf B:20-114 1evt D:159-247 1fhg A:42-132 1fq9 C:159-247 1gxe A:652-767 1ie5 A:214-304 1ij9 A:25-112 1koa :6585-6674 1pd6 A:363-448 1qct E:153-241 1qz1 A:214-305 1ry7 B:157-245 1tlk :42-132 1tnm :33489-3357 1tnn :33489-3357 1u2h A:43-113 1vca A:25-112 1vsc A:25-112 1wf5 A:306-320 1wit :4150-4239 1wiu :4150-4239 1wwc A:325-352 1x44 A:342-430 2cqv A:1238-1327 2cry A:419-516 2ncm :20-114

I-set domains are found in several cell adhesion molecules, including vascular (VCAM), intercellular (ICAM), neural (NCAM) and mucosal addressin (MADCAM) cell adhesion molecules, as well as junction adhesion molecules (JAM). I-set domains are also present in several other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, [2] and the signalling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. [3]

Human proteins containing this domain

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that help cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

Cell adhesion molecules (CAMs) are a subset of cell surface proteins that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. In essence, CAMs help cells stick to each other and to their surroundings. CAMs are crucial components in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in generating force and movement and consequently ensuring that organs are able to execute their functions normally. In addition to serving as "molecular glue", CAMs play important roles in the cellular mechanisms of growth, contact inhibition, and apoptosis. Aberrant expression of CAMs may result in a wide range of pathologies, ranging from frostbite to cancer.

<span class="mw-page-title-main">DSCAM</span> Protein-coding gene in the species Homo sapiens

DSCAM and Dscam are both abbreviations for Down syndrome cell adhesion molecule. In humans, DSCAM refers to a gene that encodes one of several protein isoforms.

<span class="mw-page-title-main">Ephrin receptor</span> Protein family

Eph receptors are a group of receptors that are activated in response to binding with Eph receptor-interacting proteins (Ephrins). Ephs form the largest known subfamily of receptor tyrosine kinases (RTKs). Both Eph receptors and their corresponding ephrin ligands are membrane-bound proteins that require direct cell-cell interactions for Eph receptor activation. Eph/ephrin signaling has been implicated in the regulation of a host of processes critical to embryonic development including axon guidance, formation of tissue boundaries, cell migration, and segmentation. Additionally, Eph/ephrin signaling has been identified to play a critical role in the maintenance of several processes during adulthood including long-term potentiation, angiogenesis, and stem cell differentiation and cancer.

Semaphorins are a class of secreted and membrane proteins that were originally identified as axonal growth cone guidance molecules. They primarily act as short-range inhibitory signals and signal through multimeric receptor complexes. Semaphorins are usually cues to deflect axons from inappropriate regions, especially important in the neural system development. The major class of proteins that act as their receptors are called plexins, with neuropilins as their co-receptors in many cases. The main receptors for semaphorins are plexins, which have established roles in regulating Rho-family GTPases. Recent work shows that plexins can also influence R-Ras, which, in turn, can regulate integrins. Such regulation is probably a common feature of semaphorin signalling and contributes substantially to our understanding of semaphorin biology.

<span class="mw-page-title-main">VEGF receptor</span> Protein family

VEGF receptors (VEGFRs) are receptors for vascular endothelial growth factor (VEGF). There are three main subtypes of VEGFR, numbered 1, 2 and 3. Depending on alternative splicing, they may be membrane-bound (mbVEGFR) or soluble (sVEGFR).

<span class="mw-page-title-main">Plexin</span> Protein

A plexin is a protein which acts as a receptor for semaphorin family signaling proteins. It is classically known for its expression on the surface of axon growth cones and involvement in signal transduction to steer axon growth away from the source of semaphorin. Plexin also has implications in development of other body systems by activating GTPase enzymes to induce a number of intracellular biochemical changes leading to a variety of downstream effects.

<span class="mw-page-title-main">Ephrin B1</span> Protein-coding gene in the species Homo sapiens

Ephrin B1 is a protein that in humans is encoded by the EFNB1 gene. It is a member of the ephrin family. The encoded protein is a type I membrane protein and a ligand of Eph-related receptor tyrosine kinases. It may play a role in cell adhesion and function in the development or maintenance of the nervous system.

<span class="mw-page-title-main">CELSR3</span> Protein-coding gene in the species Homo sapiens

Cadherin EGF LAG seven-pass G-type receptor 3 is a protein that in humans is encoded by the CELSR3 gene.

<span class="mw-page-title-main">CELSR1</span> Protein-coding gene in humans

Cadherin EGF LAG seven-pass G-type receptor 1 also known as flamingo homolog 2 or cadherin family member 9 is a protein that in humans is encoded by the CELSR1 gene.

<span class="mw-page-title-main">TAS2R10</span> Protein-coding gene in the species Homo sapiens

Taste receptor type 2 member 10 is a protein that in humans is encoded by the TAS2R10 gene. The protein is responsible for bitter taste recognition in mammals. It serves as a defense mechanism to prevent consumption of toxic substances which often have a characteristic bitter taste.

<span class="mw-page-title-main">Sema domain</span>

The Sema domain is a structural domain of semaphorins, which are a large family of secreted and transmembrane proteins, some of which function as repellent signals during axon guidance. Sema domains also occur in the hepatocyte growth factor receptor, Plexin-A3 and in viral proteins.

<span class="mw-page-title-main">EPH receptor A2</span> Protein-coding gene in humans

EPH receptor A2 is a protein that in humans is encoded by the EPHA2 gene.

<span class="mw-page-title-main">EPH receptor B4</span> Protein-coding gene in the species Homo sapiens

Ephrin type-B receptor 4 is a protein that in humans is encoded by the EPHB4 gene.

<span class="mw-page-title-main">SEMA4D</span>

Semaphorin-4D (SEMA4D) also known as Cluster of Differentiation 100 (CD100), is a protein of the semaphorin family that in humans is encoded by the SEMA4D gene.

<span class="mw-page-title-main">PLXNB1</span> Protein-coding gene in the species Homo sapiens

Plexin B1 is a protein of the plexin family that in humans is encoded by the PLXNB1 gene.

<span class="mw-page-title-main">Contactin 2</span> Protein-coding gene in the species Homo sapiens

Contactin-2 is a protein that in humans is encoded by the CNTN2 gene.

<span class="mw-page-title-main">EPHB3</span> Protein-coding gene in the species Homo sapiens

Ephrin type-B receptor 3 is a protein that in humans is encoded by the EPHB3 gene.

WH1 domain is an evolutionary conserved protein domain found on WASP proteins, which are often involved in actin polymerization.

<span class="mw-page-title-main">Tropic cues involved in growth cone guidance</span>

The growth cone is a highly dynamic structure of the developing neuron, changing directionality in response to different secreted and contact-dependent guidance cues; it navigates through the developing nervous system in search of its target. The migration of the growth cone is mediated through the interaction of numerous trophic and tropic factors; netrins, slits, ephrins and semaphorins are four well-studied tropic cues (Fig.1). The growth cone is capable of modifying its sensitivity to these guidance molecules as it migrates to its target; this sensitivity regulation is an important theme seen throughout development.

References

  1. Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M (May 2000). "Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity". Cell. 101 (4): 413–24. doi: 10.1016/S0092-8674(00)80851-X . PMID   10830168. S2CID   16374022.
  2. Sonderegger P, Welte W, Diederichs K, Freigang J, Proba K, Leder L (2000). "The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion" (PDF). Cell. 101 (4): 425–33. doi:10.1016/S0092-8674(00)80852-1. PMID   10830169. S2CID   15440572. Archived from the original (PDF) on 2018-07-19. Retrieved 2020-09-03.
  3. Stuart DI, Jones EY, Harlos K, Esnouf RM, Love CA (2006). "Structure determination of human semaphorin 4D as an example of the use of MAD in non-optimal cases". Acta Crystallogr. D. 62 (Pt 1): 108–15. doi: 10.1107/S0907444905034992 . PMID   16369100.
This article incorporates text from the public domain Pfam and InterPro: IPR013098