List of climate change controversies

Last updated

There are past and present public debates over certain aspects of climate change: how much has occurred in modern times, what causes it, what its effects will be, and what action should be taken to curb it now or later, and so forth. In the scientific literature, there is a very strong consensus that global surface temperatures have increased in recent decades and that the trend is caused by human-induced emissions of greenhouse gases. [1]

Contents

The controversies are, by now, mostly political rather than scientific: there is a scientific consensus that global warming is happening and is caused by human activity. [2] Public debates that also reflect scientific debate include estimates of how responsive the climate system might be to any given level of greenhouse gases (climate sensitivity). Disputes over the key scientific facts of global warming are more prevalent in the media than in the scientific literature, where such issues are treated as resolved, and such disputes are more prevalent in the United States and Australia than globally. [3] [4] [5]

Debates around details in the science

There have been many debates around the details of climate change science. Climate change deniers and "skeptics" tend to cherry-pick data or studies, and then trump up any scientific discussions or apparent discrepancies that match with their agenda.[ citation needed ] Many of those apparent discrepancies have been reconciled in the meantime, climate models have become more accurate, the scientific consensus on climate change has strengthened and so forth. For example, climatologist Kevin E. Trenberth has published widely on the topic of climate variability and has exposed flaws in the publications of other scientists. [6] [7] [8]

For past debates and controversies on scientific details see for example:

Debates over most effective response to warming

There have been debates on the best responses to slow global warming, and their timing. The debates are around the specific actions for climate change mitigation and climate change adaptation, or climate action in general. See for example:

See also

Related Research Articles

<span class="mw-page-title-main">Causes of climate change</span> Effort to scientifically ascertain mechanisms responsible for recent global warming

The scientific community has been investigating the causes of climate change for decades. After thousands of studies, it came to a consensus, where it is "unequivocal that human influence has warmed the atmosphere, ocean and land since pre-industrial times." This consensus is supported by around 200 scientific organizations worldwide, The dominant role in this climate change has been played by the direct emissions of carbon dioxide from the burning of fossil fuels. Indirect CO2 emissions from land use change, and the emissions of methane, nitrous oxide and other greenhouse gases play major supporting roles.

<span class="mw-page-title-main">Intergovernmental Panel on Climate Change</span> Scientific intergovernmental body

The Intergovernmental Panel on Climate Change (IPCC) is an intergovernmental body of the United Nations. Its job is to advance scientific knowledge about climate change caused by human activities. The World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) set up the IPCC in 1988. The United Nations endorsed the creation of the IPCC later that year. It has a secretariat in Geneva, Switzerland, hosted by the WMO. It has 195 member states who govern the IPCC. The member states elect a bureau of scientists to serve through an assessment cycle. A cycle is usually six to seven years. The bureau selects experts in their fields to prepare IPCC reports. There is a formal nomination process by governments and observer organizations to find these experts. The IPCC has three working groups and a task force, which carry out its scientific work.

<span class="mw-page-title-main">Temperature record of the last 2,000 years</span> Temperature trends in the Common Era

The temperature record of the last 2,000 years is reconstructed using data from climate proxy records in conjunction with the modern instrumental temperature record which only covers the last 170 years at a global scale. Large-scale reconstructions covering part or all of the 1st millennium and 2nd millennium have shown that recent temperatures are exceptional: the Intergovernmental Panel on Climate Change Fourth Assessment Report of 2007 concluded that "Average Northern Hemisphere temperatures during the second half of the 20th century were very likely higher than during any other 50-year period in the last 500 years and likely the highest in at least the past 1,300 years." The curve shown in graphs of these reconstructions is widely known as the hockey stick graph because of the sharp increase in temperatures during the last century. As of 2010 this broad pattern was supported by more than two dozen reconstructions, using various statistical methods and combinations of proxy records, with variations in how flat the pre-20th-century "shaft" appears. Sparseness of proxy records results in considerable uncertainty for earlier periods.

<span class="mw-page-title-main">Scientific consensus on climate change</span> Evaluation of climate change by the scientific community

There is a nearly unanimous scientific consensus that the Earth has been consistently warming since the start of the Industrial Revolution, that the rate of recent warming is largely unprecedented, and that this warming is mainly the result of a rapid increase in atmospheric carbon dioxide (CO2) caused by human activities. The human activities causing this warming include fossil fuel combustion, cement production, and land use changes such as deforestation, with a significant supporting role from the other greenhouse gases such as methane and nitrous oxide. This human role in climate change is considered "unequivocal" and "incontrovertible".

<span class="mw-page-title-main">Kevin Trenberth</span> New Zealand and American climate scientist

Kevin Edward Trenberth worked as a climate scientist in the Climate Analysis Section at the US National Center for Atmospheric Research (NCAR). He was a lead author of the 1995, 2001 and 2007 IPCC assessment reports. He also played major roles in the World Climate Research Programme (WCRP), for example in its Tropical Oceans Global Atmosphere program (TOGA), the Climate Variability and Predictability (CLIVAR) program, and the Global Energy and Water Exchanges (GEWEX) project.

The Summary for policymakers (SPM) is a summary of the Intergovernmental Panel on Climate Change (IPCC) reports intended to aid policymakers. The form is approved line by line by governments: "Negotiations occur over wording to ensure accuracy, balance, clarity of message, and relevance to understanding and policy."

<span class="mw-page-title-main">IPCC Third Assessment Report</span> Assessment of available scientific and socio-economic information on climate change by the IPCC

The IPCC Third Assessment Report (TAR), Climate Change 2001, is an assessment of available scientific and socio-economic information on climate change by the IPCC. Statements of the IPCC or information from the TAR were often used as a reference showing a scientific consensus on the subject of global warming. The Third Assessment Report (TAR) was completed in 2001 and consists of four reports, three of them from its Working Groups: Working Group I: The Scientific Basis; Working Group II: Impacts, Adaptation and Vulnerability; Working Group III: Mitigation; Synthesis Report. A number of the TAR's conclusions are given quantitative estimates of how probable it is that they are correct, e.g., greater than 66% probability of being correct. These are "Bayesian" probabilities, which are based on an expert assessment of all the available evidence.

<span class="mw-page-title-main">Climate sensitivity</span> Concept in climate science

Climate sensitivity is a key measure in climate science and describes how much Earth's surface will warm for a doubling in the atmospheric carbon dioxide (CO2) concentration. Its formal definition is: "The change in the surface temperature in response to a change in the atmospheric carbon dioxide (CO2) concentration or other radiative forcing." This concept helps scientists understand the extent and magnitude of the effects of climate change.

<span class="mw-page-title-main">False balance</span> Media bias on opposing viewpoints

False balance, known colloquially as bothsidesism, is a media bias in which journalists present an issue as being more balanced between opposing viewpoints than the evidence supports. Journalists may present evidence and arguments out of proportion to the actual evidence for each side, or may omit information that would establish one side's claims as baseless. False balance has been cited as a cause of misinformation.

The iris hypothesis was a hypothesis proposed by Richard Lindzen and colleagues in 2001 that suggested increased sea surface temperature in the tropics would result in reduced cirrus clouds and thus more infrared radiation leakage from Earth's atmosphere. His study of observed changes in cloud coverage and modeled effects on infrared radiation released to space as a result seemed to support the hypothesis. This suggested infrared radiation leakage was hypothesized to be a negative feedback in which an initial warming would result in an overall cooling of the surface.

<span class="mw-page-title-main">Climate change</span> Human-caused changes to climate on Earth

Present-day climate change includes both global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global temperatures is driven by human activities, especially fossil fuel burning since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices release greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels not seen for millions of years.

<span class="mw-page-title-main">Climate change denial</span> Denial of the scientific consensus on climate change

Climate change denial is a form of science denial characterized by rejecting, refusing to acknowledge, disputing, or fighting the scientific consensus on climate change. Those promoting denial commonly use rhetorical tactics to give the appearance of a scientific controversy where there is none. Climate change denial includes unreasonable doubts about the extent to which climate change is caused by humans, its effects on nature and human society, and the potential of adaptation to global warming by human actions. To a lesser extent, climate change denial can also be implicit when people accept the science but fail to reconcile it with their belief or action. Several studies have analyzed these positions as forms of denialism, pseudoscience, or propaganda.

<span class="mw-page-title-main">History of climate change science</span> Aspect of the history of science

The history of the scientific discovery of climate change began in the early 19th century when ice ages and other natural changes in paleoclimate were first suspected and the natural greenhouse effect was first identified. In the late 19th century, scientists first argued that human emissions of greenhouse gases could change Earth's energy balance and climate. The existence of the greenhouse effect, while not named as such, was proposed as early as 1824 by Joseph Fourier. The argument and the evidence were further strengthened by Claude Pouillet in 1827 and 1838. In 1856 Eunice Newton Foote demonstrated that the warming effect of the sun is greater for air with water vapour than for dry air, and the effect is even greater with carbon dioxide.

<span class="mw-page-title-main">Climatic Research Unit documents</span>

Climatic Research Unit documents including thousands of e-mails and other computer files were stolen from a server at the Climatic Research Unit of the University of East Anglia in a hacking incident in November 2009. The documents were redistributed first through several blogs of global warming deniers, who alleged that the documents indicated misconduct by leading climate scientists. A series of investigations rejected these allegations, while concluding that CRU scientists should have been more open with distributing data and methods on request. Precisely six committees investigated the allegations and published reports, finding no evidence of fraud or scientific misconduct. The scientific consensus that global warming is occurring as a result of human activity remained unchanged by the end of the investigations.

Watts Up With That? (WUWT) is a blog promoting climate change denial that was created by Anthony Watts in 2006.

<span class="mw-page-title-main">Media coverage of climate change</span>

Media coverage of climate change has had effects on public opinion on climate change, as it conveys the scientific consensus on climate change that the global temperature has increased in recent decades and that the trend is caused by human-induced emissions of greenhouse gases.

<span class="mw-page-title-main">Ocean temperature</span> Physical quantity of hot and cold in ocean water

The ocean temperature plays a crucial role in the global climate system, ocean currents and for marine habitats. It varies depending on depth, geographical location and season. Not only does the temperature differ in seawater, so does the salinity. Warm surface water is generally saltier than the cooler deep or polar waters. In polar regions, the upper layers of ocean water are cold and fresh. Deep ocean water is cold, salty water found deep below the surface of Earth's oceans. This water has a uniform temperature of around 0-3 °C. The ocean temperature also depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over 30 °C (86 °F). Near the poles the temperature in equilibrium with the sea ice is about −2 °C (28 °F).

<span class="mw-page-title-main">Effects of climate change on oceans</span>

There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a rise in sea levels due to the expansion of water as it warms and the melting of ice sheets on land. Other effects on oceans include sea ice decline, reducing pH values and oxygen levels, as well as increased ocean stratification. All this can lead to changes of ocean currents, for example a weakening of the Atlantic meridional overturning circulation (AMOC). The main cause of these changes are the emissions of greenhouse gases from human activities, mainly burning of fossil fuels and deforestation. Carbon dioxide and methane are examples of greenhouse gases. The additional greenhouse effect leads to ocean warming because the ocean takes up most of the additional heat in the climate system. The ocean also absorbs some of the extra carbon dioxide that is in the atmosphere. This causes the pH value of the seawater to drop. Scientists estimate that the ocean absorbs about 25% of all human-caused CO2 emissions.

The North Report was a 2006 report evaluating reconstructions of the temperature record of the past two millennia, providing an overview of the state of the science and the implications for understanding of global warming. It was produced by a National Research Council committee, chaired by Gerald North, at the request of Representative Sherwood Boehlert as chairman of the U.S. House of Representatives Committee on Science.

<span class="mw-page-title-main">Effects of climate change on the water cycle</span>

The effects of climate change on the water cycle are profound and have been described as an intensification or a strengthening of the water cycle. This effect has been observed since at least 1980. One example is when heavy rain events become even stronger. The effects of climate change on the water cycle have important negative effects on the availability of freshwater resources, as well as other water reservoirs such as oceans, ice sheets, the atmosphere and soil moisture. The water cycle is essential to life on Earth and plays a large role in the global climate system and ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons. For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.

References

  1. "'Climate Change 2013: The Physical Science Basis.' IPCC Fifth Assessment Report, Working Group I, Summary for Policymakers. 'The best estimate of the human-induced contribution to warming is similar to the observed warming over this period.'" (PDF). Archived from the original (PDF) on 22 October 2018. Retrieved 26 December 2018.
  2. "Scientific consensus: Earth's climate is warming". Climate Change: Vital Signs of the Planet. Retrieved 16 September 2018.
  3. Stoddard, Isak; Anderson, Kevin; Capstick, Stuart; Carton, Wim; Depledge, Joanna; Facer, Keri; Gough, Clair; Hache, Frederic; Hoolohan, Claire; Hultman, Martin; Hällström, Niclas; Kartha, Sivan; Klinsky, Sonja; Kuchler, Magdalena; Lövbrand, Eva; Nasiritousi, Naghmeh; Newell, Peter; Peters, Glen P.; Sokona, Youba; Stirling, Andy; Stilwell, Matthew; Spash, Clive L.; Williams, Mariama; et al. (18 October 2021). "Three Decades of Climate Mitigation: Why Haven't We Bent the Global Emissions Curve?". Annual Review of Environment and Resources. 46 (1): 653–689. doi:10.1146/annurev-environ-012220-011104. hdl: 1983/93c742bc-4895-42ac-be81-535f36c5039d . ISSN   1543-5938. S2CID   233815004 . Retrieved 31 August 2022.
  4. Boykoff, M.; Boykoff, J. (July 2004). "Balance as bias: global warming and the US prestige press" (PDF). Global Environmental Change Part A. 14 (2): 125–136. Bibcode:2004GEC....14..125B. doi:10.1016/j.gloenvcha.2003.10.001. Archived from the original (PDF) on 6 November 2015.
  5. Oreskes, Naomi; Conway, Erik (2010). Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming (first ed.). Bloomsbury Press. ISBN   978-1-59691-610-4.
  6. Trenberth, Kevin E.; Fasullo, John T.; Abraham, John P. (2011). "Issues in Establishing Climate Sensitivity in Recent Studies". Remote Sensing. 3 (9): 2051–2056. Bibcode:2011RemS....3.2051T. doi: 10.3390/rs3092051 . ISSN   2072-4292.
  7. Trenberth, Kevin E.; Fasullo, John T.; O'Dell, Chris; Wong, Takmeng (2010). "Relationships between tropical sea surface temperature and top-of-atmosphere radiation". Geophysical Research Letters. 37 (3). Bibcode:2010GeoRL..37.3702T. doi: 10.1029/2009GL042314 . ISSN   0094-8276. S2CID   6402800.
  8. Foster, G.; Annan, J. D.; Jones, P. D.; Mann, M. E.; Mullan, B.; Renwick, J.; Salinger, J.; Schmidt, G. A.; Trenberth, K. E. (2010). "Comment on "Influence of the Southern Oscillation on tropospheric temperature" by J. D. McLean, C. R. de Freitas, and R. M. Carter". Journal of Geophysical Research: Atmospheres. 115 (D9). Bibcode:2010JGRD..115.9110F. doi: 10.1029/2009JD012960 . ISSN   0148-0227.